如果您觉得本文对您有所帮助,请帮忙点赞,感谢!
一. 仿射变换算法原理:
二. 仿射变换倾斜算法原理:
原图像大小为h*w
X-sharing:
Y-sharing:
三. 实验:python实现仿射变换 ——> 图像倾斜 ——> x轴逆时针旋转 30°,y轴逆时针旋转30°
1 import cv2 2 import numpy as np 3 import matplotlib.pyplot as plt 4 5 # Affine 6 def affine(img, dx=30, dy=30): 7 # get shape 8 H, W, C = img.shape 9 10 # Affine hyper parameters 11 a = 1. 12 b = dx / H 13 c = dy / W 14 d = 1. 15 tx = 0. 16 ty = 0. 17 18 # prepare temporary 19 _img = np.zeros((H+2, W+2, C), dtype=np.float32) 20 21 # insert image to center of temporary 22 _img[1:H+1, 1:W+1] = img 23 24 # prepare affine image temporary 25 H_new = np.ceil(dy + H).astype(np.int) 26 W_new = np.ceil(dx + W).astype(np.int) 27 out = np.zeros((H_new, W_new, C), dtype=np.float32) 28 29 # preprare assigned index 30 x_new = np.tile(np.arange(W_new), (H_new, 1)) 31 y_new = np.arange(H_new).repeat(W_new).reshape(H_new, -1) 32 33 # prepare inverse matrix for affine 34 adbc = a * d - b * c 35 x = np.round((d * x_new - b * y_new) / adbc).astype(np.int) - tx + 1 36 y = np.round((-c * x_new + a * y_new) / adbc).astype(np.int) - ty + 1 37 38 x = np.minimum(np.maximum(x, 0), W+1).astype(np.int) 39 y = np.minimum(np.maximum(y, 0), H+1).astype(np.int) 40 41 # assign value from original to affine image 42 out[y_new, x_new] = _img[y, x] 43 out = out.astype(np.uint8) 44 45 return out 46 47 # Read image 48 image1 = cv2.imread("../paojie.jpg").astype(np.float32) 49 # Affine 50 out = affine(image1, dx=30, dy=30) 51 # Save result 52 cv2.imshow("result", out) 53 cv2.imwrite("out.jpg", out) 54 cv2.waitKey(0) 55 cv2.destroyAllWindows()
四. 实验结果:
五. 代码疑难点讲解:
请参考:https://www.cnblogs.com/wojianxin/p/12519498.html 的第五部分内容
六. 参考内容:
https://www.jianshu.com/p/08611282153f
七. 版权声明:
未经作者允许,请勿随意转载抄袭,抄袭情节严重者,作者将考虑追究其法律责任,创作不易,感谢您的理解和配合!