题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1394
Minimum Inversion Number
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 10911 Accepted Submission(s): 6713
Problem Description
The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
Output
For each case, output the minimum inversion number on a single line.
Sample Input
10
1 3 6 9 0 8 5 7 4 2
Sample Output
16
Author
CHEN, Gaoli
Source
Recommend
题解
题意:一个由0..n-1组成的序列,每次可以把队首的元素移到队尾,求形成的n个序列最小逆序对数目
算法:
由树状数组求逆序对。加入元素i即把以元素i为下标的a[i]值+1,从队尾到队首入队,
每次入队时逆序对数 += getsum(i - 1),即下标比它大的但是值比它小的元素个数。
因为树状数组不能处理下标为0的元素,每个元素进入时+1,相应的其他程序也要相应调整。
求出原始的序列的逆序对个数后每次把最前面的元素移到队尾,逆序对数即为
原逆序对数+比i大的元素个数-比i小的元素个数,因为是0..n,容易直接算出,每次更新min即可。
1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include<algorithm> 5 6 using namespace std; 7 8 const int N=5010; 9 10 int n,arr[N],num[N]; 11 12 int lowbit(int x) 13 { 14 return x&(-x); 15 } 16 17 void update(int id,int x) 18 { 19 while(id<=N) 20 { 21 arr[id]+=x; 22 id+=lowbit(id); 23 } 24 } 25 26 int Sum(int id) 27 { 28 int ans=0; 29 while(id>0) 30 { 31 ans+=arr[id]; 32 id-=lowbit(id); 33 } 34 return ans; 35 } 36 37 int min(int x,int y) 38 { 39 return x>y?y:x; 40 } 41 42 int main() 43 { 44 while(scanf("%d",&n)!=EOF) 45 { 46 memset(arr,0,sizeof(arr)); 47 int i,ans=0; 48 for(i=1;i<=n;i++) 49 { 50 scanf("%d",&num[i]); 51 ans+=Sum(n+1)-Sum(num[i]+1); 52 update(num[i]+1,1); 53 } 54 int tmp=ans; 55 for(i=1;i<=n;i++) 56 { 57 tmp+=n-1-num[i]-num[i]; 58 ans=min(ans,tmp); 59 } 60 printf("%d\n",ans); 61 } 62 return 0; 63 }