zoukankan      html  css  js  c++  java
  • Triangle

    Dynamic Programming

    Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

    For example, given the following triangle

    [
         [2],
        [3,4],
       [6,5,7],
      [4,1,8,3]
    ]
    

    The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

    Note:
    Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

    C++代码实现:

    #include<iostream>
    #include<vector>
    #include<climits>
    #include<cmath>
    using namespace std;
    
    class Solution {
    public:
        int minimumTotal(vector<vector<int> > &triangle) {
            if(triangle.empty())
                return 0;
            if(triangle.size()==1)
                return triangle[0][0];
            int i,j;
            for(i=(int)triangle.size()-2;i>=0;i--)
            {
                for(j=0;j<(int)triangle[i].size();j++)
                {
                    triangle[i][j]+=min(triangle[i+1][j],triangle[i+1][j+1]);
                }
            }
            return triangle[0][0];
        }
    };
    
    int main()
    {
        Solution s;
        vector<vector<int> > triangle={{-1},{2,3},{1,-1,-3}};
        cout<<s.minimumTotal(triangle)<<endl;
    }
  • 相关阅读:
    算符优先分析
    自下而上语法分析
    递归下降语法分析
    LL(1)文法的判断,递归下降分析程序
    消除左递归
    4.K均值算法--应用
    2.机器学习相关数学基础
    K均值算法
    机器学习概述
    算符优先分析
  • 原文地址:https://www.cnblogs.com/wuchanming/p/4108702.html
Copyright © 2011-2022 走看看