zoukankan      html  css  js  c++  java
  • You can Solve a Geometry Problem too(判断两线段是否相交)

    You can Solve a Geometry Problem too

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 199    Accepted Submission(s): 132
     
    Problem Description
    Many geometry(几何)problems were designed in the ACM/ICPC. And now, I also prepare a geometry problem for this final exam. According to the experience of many ACMers, geometry problems are always much trouble, but this problem is very easy, after all we are now attending an exam, not a contest :) Give you N (1<=N<=100) segments(线段), please output the number of all intersections(交点). You should count repeatedly if M (M>2) segments intersect at the same point.
    Note: You can assume that two segments would not intersect at more than one point.
     
    Input
    Input contains multiple test cases. Each test case contains a integer N (1=N<=100) in a line first, and then N lines follow. Each line describes one segment with four float values x1, y1, x2, y2 which are coordinates of the segment’s ending. A test case starting with 0 terminates the input and this test case is not to be processed.
     
    Output
                For each case, print the number of intersections, and one line one case.
     
    Sample Input
    2
    0.00 0.00 1.00 1.00
    0.00 1.00 1.00 0.00
    3
    0.00 0.00 1.00 1.00
    0.00 1.00 1.00 0.000
    0.00 0.00 1.00 0.00
    0
     
    Sample Output
    1
    3
     
    Author
    lcy
     
    /*
    计算几何求所给线段的交点数量
    
    */
    #include<bits/stdc++.h>
    using namespace std;
    struct Point{//
        double x,y;
        Point(){}
        Point(int a,int b){
            x=a;
            y=b;
        }
        void input(){
            scanf("%lf%lf",&x,&y);
        }
    };
    struct Line{//线段
        Point a,b;
        Line(){}
        Line(Point x,Point y){
            a=x;
            b=y;
        }
        void input(){
            a.input();
            b.input();
        }
    };
    bool judge(Point &a,Point &b,Point &c,Point &d)
    {
        if(!(min(a.x,b.x)<=max(c.x,d.x) && min(c.y,d.y)<=max(a.y,b.y)&&
            min(c.x,d.x)<=max(a.x,b.x) && min(a.y,b.y)<=max(c.y,d.y)))//这里的确如此,这一步是判定两矩形是否相交
            //特别要注意一个矩形含于另一个矩形之内的情况
        return false;
        double u,v,w,z;//分别记录两个向量
        u=(c.x-a.x)*(b.y-a.y)-(b.x-a.x)*(c.y-a.y);
        v=(d.x-a.x)*(b.y-a.y)-(b.x-a.x)*(d.y-a.y);
        w=(a.x-c.x)*(d.y-c.y)-(d.x-c.x)*(a.y-c.y);
        z=(b.x-c.x)*(d.y-c.y)-(d.x-c.x)*(b.y-c.y);
        return (u*v<=0.00000001 && w*z<=0.00000001);
    }
    vector<Line>v;//用来存放线段
    int n;
    Line a;
    void init(){
        v.clear();
    }
    int main(){
        //freopen("in.txt","r",stdin);
        while(scanf("%d",&n)!=EOF&&n){
            init();
            for(int i=0;i<n;i++){
                a.input();
                v.push_back(a);
            }//将线段存入
            int cur=0;
            for(int i=0;i<v.size();i++){
                for(int j=i+1;j<v.size();j++)
                    if(judge(v[i].a,v[i].b,v[j].a,v[j].b))
                        cur++;
            }
            printf("%d
    ",cur);
        }
        return 0;
    }
  • 相关阅读:
    常用配色方案
    js一个典型的对象写法,推荐使用这种格式,用于处理图像的基本方法、
    jquery 插件开发分析
    理解js 的作用域链 原型链 闭包 词法分析
    根据入栈判断出栈是否合法
    动态规划之数字三角形(三种解法:递归,递推,记忆化搜索)
    memset用法详解
    刘汝佳算法竞赛入门经典中的运算符>?问题
    算法之递推及其应用(递推关系的建立及在信息学竞赛中的应用 安徽 高寒蕊)
    自适应流体布局
  • 原文地址:https://www.cnblogs.com/wuwangchuxin0924/p/6218499.html
Copyright © 2011-2022 走看看