由于经常需要涉及到TCGA数据的分析,我简单的整理了一下数据批量下载的文件后缀。
cancer_name <- "SKCM" output_path <- paste0("/home/wang/Documents/课题/data/zip/", cancer_name) system(paste0("mkdir ", output_path)) axel_string <- paste0("axel -n 30 -o ", output_path, " ") main_path <- paste0("http://gdac.broadinstitute.org/runs/stddata__2016_01_28/data/", cancer_name, "/20160128/gdac.broadinstitute.org_") #gene gene_path <- paste0(main_path, cancer_name, ".Merge_rnaseqv2__illuminahiseq_rnaseqv2__unc_edu__Level_3__RSEM_genes__data.Level_3.2016012800.0.0.tar.gz") system(paste0(axel_string, gene_path)) #methylation methylation_path <- paste0(main_path, cancer_name, ".Methylation_Preprocess.Level_3.2016012800.0.0.tar.gz") system(paste0(axel_string, methylation_path)) #mutation mutation_path <- paste0(main_path, cancer_name, ".Mutation_Packager_Calls.Level_3.2016012800.0.0.tar.gz") system(paste0(axel_string, mutation_path)) #SCNA SCNA_path <- paste0(main_path, cancer_name, ".Merge_snp__genome_wide_snp_6__broad_mit_edu__Level_3__segmented_scna_hg19__seg.Level_3.2016012800.0.0.tar.gz") system(paste0(axel_string, SCNA_path)) #clinical clinical_path <- paste0(main_path, cancer_name, ".Merge_Clinical.Level_1.2016012800.0.0.tar.gz") system(paste0(axel_string, clinical_path)) #miRNA miRNA_path <- paste0(main_path, cancer_name, ".Merge_mirnaseq__illuminahiseq_mirnaseq__bcgsc_ca__Level_3__miR_gene_expression__data.Level_3.2016012800.0.0.tar.gz") system(paste0(axel_string, miRNA_path))