zoukankan      html  css  js  c++  java
  • 532. K-diff Pairs in an Array

    Given an array of integers and an integer k, you need to find the number of unique k-diff pairs in the array. Here a k-diff pair is defined as an integer pair (i, j), where i and j are both numbers in the array and their absolute difference is k.
    Example 1:

    Input: [3, 1, 4, 1, 5], k = 2
    Output: 2
    Explanation: There are two 2-diff pairs in the array, (1, 3) and (3, 5).
    Although we have two 1s in the input, we should only return the number of unique pairs.
    

    Example 2:

    Input:[1, 2, 3, 4, 5], k = 1
    Output: 4
    Explanation: There are four 1-diff pairs in the array, (1, 2), (2, 3), (3, 4) and (4, 5).
    

    Example 3:

    Input: [1, 3, 1, 5, 4], k = 0
    Output: 1
    Explanation: There is one 0-diff pair in the array, (1, 1).
    

    note:

    • 1.The pairs (i, j) and (j, i) count as the same pair.
    • 2.The length of the array won't exceed 10,000.
    • 3.All the integers in the given input belong to the range: [-1e7, 1e7].

    题目的意思是给定一个值K,从数组中找出差值为k元素的个数。

    public int findPairs(int[] nums, int k) {
            if(nums == null || nums.length ==0 || k < 0) return 0;
            HashMap<Integer,Integer> map = new HashMap<>();
            int count = 0;
            for(int i:nums)
            {
                map.put(i, map.getOrDefault(i, 0) + 1);
            }
            for(Map.Entry<Integer, Integer> entry : map.entrySet())
            {
                if(k == 0)
                {
                    if(entry.getValue() >= 2)
                        count ++;
                }
                else {
                    if(map.containsKey(entry.getKey() +k))
                        count ++;
                }
            }
            return count;
        }
    

    代码的思想很简单 ,先使用map计算每个值出现的次数,假设nums=[3, 1, 4, 1, 5] k=2,那么map的结果是[1=2, 3=1, 4=1, 5=1]

    • 1.如果k=0,找出出现次数大于2元素的个数
    • 2.如果k != 0,这个时候巧妙的使用set,找出是否存在entry.getKey() +k的值。
      本题目的要点是map和set的使用。
  • 相关阅读:
    Zoj 3511 线段树
    HDU 3340 Rain in ACStar 线段树+简单几何?
    BZOJ 2282 & 树的直径
    BZOJ 1121 & science
    BZOJ 1067 & Interval_Tree
    BZOJ 1001 & SPFA
    UVa 11181 条件概率
    并查集——启发式合并,路径压缩
    GSS系列(1)——GSS1&&GSS3
    评测脚本
  • 原文地址:https://www.cnblogs.com/wxshi/p/7828149.html
Copyright © 2011-2022 走看看