zoukankan      html  css  js  c++  java
  • hdu4998 Rotate【计算几何】

    Noting is more interesting than rotation! 

    Your little sister likes to rotate things. To put it easier to analyze, your sister makes n rotations. In the i-th time, she makes everything in the plane rotate counter-clockwisely around a point ai by a radian of pi. 

    Now she promises that the total effect of her rotations is a single rotation around a point A by radian P (this means the sum of pi is not a multiplier of 2π). 

    Of course, you should be able to figure out what is A and P :). 
    InputThe first line contains an integer T, denoting the number of the test cases. 

    For each test case, the first line contains an integer n denoting the number of the rotations. Then n lines follows, each containing 3 real numbers x, y and p, which means rotating around point (x, y) counter-clockwisely by a radian of p. 

    We promise that the sum of all p's is differed at least 0.1 from the nearest multiplier of 2π. 

    T<=100. 1<=n<=10. 0<=x, y<=100. 0<=p<=2π. OutputFor each test case, print 3 real numbers x, y, p, indicating that the overall rotation is around (x, y) counter-clockwisely by a radian of p. Note that you should print p where 0<=p<2π. 

    Your answer will be considered correct if and only if for x, y and p, the absolute error is no larger than 1e-5. 
    Sample Input
    1
    3
    0 0 1
    1 1 1
    2 2 1
    Sample Output
    1.8088715944 0.1911284056 3.0000000000

    划重点!

    一个点绕定点旋转的坐标公式:


    在平面坐标上,任意点P(x1,y1),绕一个坐标点Q(x2,y2)旋转θ角度后,新的坐标设为(x, y)的计算公式:
    
    [cpp] view plain copy
    1. x= (x1 - x2)*cos(θ) - (y1 - y2)*sin(θ) + x2 ;  
    2. y= (x1 - x2)*sin(θ) + (y1 - y2)*cos(θ) + y2 ;  

    这道题里最后的旋转角度就是前面所有的旋转角度加起来 因为不管绕哪一个点旋转 整个画面都转过了相同的角度 画面上的每一个点也都转过了相同的角度

    先设一个点 对于每一次旋转都对这个点进行旋转 就可以得到最后的时候这个点的坐标

    在根据这个点最后的坐标与最开始的坐标 可以反推出旋转中心

    emmm感觉自己高中学的几何的公式都忘光了 计算能力也大大下降 解一个复杂一点的方程都解不出了啊天哪好难过


    #include <iostream>
    #include <algorithm>
    #include <cstring>
    
    #include <cstdio>
    
    #include <cmath>
    
    using namespace std;
    #define PI 3.1415926
    #define EPS 1.0e-5
    
    int t, n;
    struct point{
        double x, y;
    }p[15];
    
    point rot(point& p, point& ding, double theta)
    {
        point c;
        c.x = (p.x - ding.x) * cos(theta) - (p.y - ding.y) * sin(theta) + ding.x;
        c.y = (p.x - ding.x) * sin(theta) + (p.y - ding.y) * cos(theta) + ding.y;
        return c;
    }
    
    int main()
    {
        cin>>t;
        while(t--){
            scanf("%d",&n);
            double anangle = 0.0;
            point a, b;
            a.x = -1.0; a.y = -20.0;
            b.x = -1.0; b.y = -20.0;
            for(int i = 0; i < n; i++){
                double angle;
                scanf("%lf%lf%lf",&p[i].x, &p[i].y, &angle);
                a = rot(a, p[i], angle);
                anangle += angle;
                while(anangle >= 2 * PI){
                    anangle -= 2 * PI;
                }
    
            }
    
            point ans;
            ans.y =(a.x*sin(anangle)+a.y*(1-cos(anangle))-(b.x*cos(anangle)-b.y*sin(anangle))*sin(anangle)-(b.x*sin(anangle)+b.y*cos(anangle))*(1-cos(anangle)))/(2-2*cos(anangle));
            ans.x=(a.x*(1-cos(anangle))-a.y*sin(anangle)-(b.x*cos(anangle)-b.y*sin(anangle))*(1-cos(anangle))+(b.x*sin(anangle)+b.y*cos(anangle))*sin(anangle))/(2-2*cos(anangle));
            printf("%.6f %.6f %.6f
    ", ans.x, ans.y, anangle);
        }
        return 0;
    
    }
    


  • 相关阅读:
    超定方程组
    单应矩阵
    Flexible Camera Calibration By Viewing a Plane From Unknown Orientations
    解 Ax = 0
    PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection
    图像处理库
    visdom 简单使用
    STN(Spatial Transformer Networks)
    Distilling the Knowledge in a Neural Network
    记一次前端中国标准时间转换为yyyy-MM-dd类型
  • 原文地址:https://www.cnblogs.com/wyboooo/p/9643412.html
Copyright © 2011-2022 走看看