zoukankan      html  css  js  c++  java
  • Ubuntu18.04 + NVidia显卡 + Anaconda3 + Tensorflow-GPU 安装、配置、测试 (无需手动安装CUDA)

    其中其决定作用的是这篇文章  https://www.pugetsystems.com/labs/hpc/Install-TensorFlow-with-GPU-Support-the-Easy-Way-on-Ubuntu-18-04-without-installing-CUDA-1170/

    注意兼容版本:https://devtalk.nvidia.com/default/topic/1047898/cuda-setup-and-installation/cuda-10-1-tensorflow-1-13/2

    1-安装显卡驱动

    在终端执行如下命令,建议先切换到国内源,如huaweicloud mirrors。

    sudo apt purge nvidia*
    ubuntu-drivers devices            # 可以看到显卡等设备,和推荐的驱动
    sudo ubuntu-drivers autoinstall   # 安装推荐驱动,通常是最新版
    

    如果通过ubuntu-drivers devices看不到NVidia显卡,则添加

    sudo add-apt-repository ppa:graphics-drivers
    sudo apt-get update

    安装完后,重启系统, 启动后,在图形界面运行Nvidia X Server Settings,可以看到显卡情况,如下图。

    2-安装Anaconda+Tensorflow-GPU

    安装 Anaconda

    bash Anaconda3-5.3.0-Linux-x86_64.sh # make sure append the Anaconda executable directory to your PATH environment variable in .bashrc
    source ~/.bashrc
    python --version # to show the python version
    

    装之前,推荐切换到国内源:

    anaconda的源改为国内镜像, 配置文件是~/.condarc

    conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
    conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
    conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
    conda config --set show_channel_urls yes

    pip源改为国内镜像, 配置文件是~/.pip/pip.conf, 该后的文件内容如下:

    [global]
    index-url = https://pypi.tuna.tsinghua.edu.cn/simple/
    [install]
    trusted-host=https://pypi.tuna.tsinghua.edu.cn

    update conda

    conda update conda -y
    conda update anaconda -y
    conda update python -y
    conda update --all -y

    安装tensorflow

    conda create --name tf-gpu   # Create a Python "virtual environment" for TensorFlow using conda
    conda activate tf-gpu       # 注意运行此命令后,命令行开头的提示变为(tf-gpu) user@computer:~$,表示tf-gpu环境处于激活状态
    # 后面的命令,都在tf-gpu环境下执行,我保留了命令行的提示,以示区别
    (tf-gpu) user@computer:~$ conda
    install tensorflow-gpu -y # install TensorFlow with GPU acceleration and all of the dependencies.

    为Tensorflow环境创建Jupyter Notebook Kernel

    (tf-gpu) user@computer:~$ conda install ipykernel -y
    (tf-gpu) user@computer:~$ conda install jupyter (tf-gpu) user@computer:~$ python -m ipykernel install --user --name tf-gpu --display-name "TensorFlow-GPU"

     安装keras

    (tf-gpu) user@computer:~$ conda install keras -y

    3-测试安装结果

    用Keras 例程(Keras内部会用到Tensorflow)

    打开Jupyter Notebook

    jupyter notebook

    创建新笔记: New下拉菜单 -> 选择TensorFlow-GPU

    输入如下测试代码,并运行:

    # Import dependencies
    import keras
    from keras.datasets import mnist
    from keras.models import Sequential
    from keras.layers import Dense, Dropout
    from keras.layers import Flatten,  MaxPooling2D, Conv2D
    from keras.callbacks import TensorBoard
    
    # Load and process the MNIST data
    # 推荐先下载mnist.npz到目录~/.keras/datasets/
    (X_train,y_train), (X_test, y_test) = mnist.load_data(path="mnist.npz")
    X_train = X_train.reshape(60000,28,28,1).astype('float32')
    X_test = X_test.reshape(10000,28,28,1).astype('float32')
    X_train /= 255
    X_test /= 255
    n_classes = 10
    y_train = keras.utils.to_categorical(y_train, n_classes)
    y_test = keras.utils.to_categorical(y_test, n_classes)
    
    # Create the LeNet-5 neural network architecture
    model = Sequential()
    model.add(Conv2D(32, kernel_size=(3,3), activation='relu', input_shape=(28,28,1)) )
    model.add(Conv2D(64, kernel_size=(3,3), activation='relu'))
    model.add(MaxPooling2D(pool_size=(2,2)))
    model.add(Dropout(0.25))
    model.add(Flatten())          
    model.add(Dense(128, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(n_classes, activation='softmax')) # Compile the model model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # Set log data to feed to TensorBoard for visual analysis tensor_board = TensorBoard('./logs/LeNet-MNIST-1') # Train the model model.fit(X_train, y_train, batch_size=128, epochs=15, verbose=1, validation_data=(X_test,y_test), callbacks=[tensor_board])

    运行完后查看误差曲线

     (tf-gpu) dbk@i9:~$ tensorboard --logdir=./logs --port 6006

     效果如下图

  • 相关阅读:
    圆形按钮窗口控制-不断减少的圆圈
    图像按钮和模拟Windows媒体播放器UI
    圆形按钮
    本机Win32主题感知所有者绘制控件没有MFC
    CRegionButton -一个多向按钮
    Iconits
    CxShadeButton
    管道符 |
    gedit
    more/less
  • 原文地址:https://www.cnblogs.com/xbit/p/9768238.html
Copyright © 2011-2022 走看看