zoukankan      html  css  js  c++  java
  • 泊松分布与泊松回归模型

    泊松分布

    Poisson分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散概率分布,由法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)在1838年时发表。

    泊松分布的概率函数为:
    泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生率。 泊松分布适合于描述单位时间内随机事件发生的次数。
    泊松分布的期望和方差均为
      
    特征函数为
     
     
    泊松分布与二项分布
    泊松分布泊松分布
    当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧20,p≦0.05时,就可以用泊松公式近似得计算。
    事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部
     
    应用场景:
    在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位。(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性。)

    泊松回归
    (英语:Poisson regression)是用来为计数资料列联表建模的一种回归分析。泊松回归假设反应变量Y是泊松分布,并假设它期望值对数可被未知参数的线性组合建模。泊松回归模型有时(特别是当用作列联表模型时)又被称作对数-线性模型。
     

    泊松回归模型和对数线性模型的区别

     
     
  • 相关阅读:
    C++中左移<<的使用
    学会构造素数序列
    有关lower_bound()函数的使用
    Codeforces Round #166 (Div. 2)
    暴力swap导致TLE问题解决办法
    memset的正确使用
    Codeforces Round #297 (Div. 2)
    Codeforces Round #170 (Div. 2)B
    Codeforces Round #176 (Div. 2)
    C/C++ sort函数的用法
  • 原文地址:https://www.cnblogs.com/xianhan/p/8979263.html
Copyright © 2011-2022 走看看