zoukankan      html  css  js  c++  java
  • [HDU3709]Balanced Number

    [HDU3709]Balanced Number

    试题描述

    A balanced number is a non-negative integer that can be balanced if a pivot is placed at some digit. More specifically, imagine each digit as a box with weight indicated by the digit. When a pivot is placed at some digit of the number, the distance from a digit to the pivot is the offset between it and the pivot. Then the torques of left part and right part can be calculated. It is balanced if they are the same. A balanced number must be balanced with the pivot at some of its digits. For example, 4139 is a balanced number with pivot fixed at 3. The torqueses are 4*2 + 1*1 = 9 and 9*1 = 9, for left part and right part, respectively. It's your job
    to calculate the number of balanced numbers in a given range [x, y].

    输入

    The input contains multiple test cases. The first line is the total number of cases T (0 < T ≤ 30). For each case, there are two integers separated by a space in a line, x and y. (0 ≤ x ≤ y ≤ 1018).

    输出

    For each case, print the number of balanced numbers in the range [x, y] in a line.

    输入示例

    2
    0 9
    7604 24324

    输出示例

    10
    897

    数据规模及约定

    见“输入

    题解

    令 f[k][i][j][s] 表示考虑数的前 i 位,最高位为 j,支点在位置 k,支点右力矩 - 左力矩 = s 的数有多少个。

    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <cctype>
    #include <algorithm>
    using namespace std;
    #define LL long long
    
    LL read() {
    	LL x = 0, f = 1; char c = getchar();
    	while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
    	while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
    	return x * f;
    }
    
    #define maxn 20
    #define maxs 1800
    LL f[maxn][maxn][10][maxs];
    
    int num[maxn];
    LL sum(LL x) {
    	if(!x) return 1;
    	int cnt = 0; LL tx = x;
    	while(x) num[++cnt] = x % 10, x /= 10;
    	LL ans = 0;
    	for(int i = cnt - 1; i; i--)
    		for(int k = 1; k <= i; k++)
    			for(int j = 1; j <= 9; j++) ans += f[k][i][j][0];
    	for(int i = cnt; i; i--) {
    		for(int k = cnt; k; k--) {
    			int s = 0;
    			for(int x = cnt; x > i; x--) s += (x - k) * num[x];
    			if(s < 0 || s >= maxs) continue;
    			for(int j = i < cnt ? 0 : 1; j < num[i]; j++) {
    				ans += f[k][i][j][s];
    //				if(!j && !s && i > 1) ans--;
    			}
    		}
    	}
    	for(int k = 1; k <= cnt; k++) {
    		int s = 0;
    		for(int x = 1; x <= cnt; x++) s += (x - k) * num[x];
    		if(!s){ ans++; break; }
    	}
    	ans++;
    	return ans;
    }
    
    int main() {
    	for(int j = 0; j <= 9; j++) f[1][1][j][0] = 1;
    	for(int k = 2; k < maxn; k++)
    		for(int j = 0; j <= 9; j++) f[k][1][j][(k-1)*j] = 1;
    	for(int k = 1; k < maxn; k++)
    		for(int i = 1; i < maxn - 1; i++)
    			for(int j = 0; j <= 9; j++)
    				for(int s = 0; s < maxs; s++) if(f[k][i][j][s]) {
    					for(int x = 0; x <= 9 && s + (k - i - 1) * x >= 0; x++)
    						if(s + (k - i - 1) * x < maxs) f[k][i+1][x][s+(k-i-1)*x] += f[k][i][j][s];
    //					printf("%d %d %d %d: %lld
    ", k, i, j, s, f[k][i][j][s]);
    				}
    	int T = read();
    	while(T--) {
    		LL l = read(), r = read();
    		LL ans = sum(r); if(l) ans -= sum(l - 1);
    		printf("%lld
    ", ans);
    	}
    	
    	return 0;
    }
    
  • 相关阅读:
    正则表达式
    Java 枚举(enum) 详解7种常见的用法
    【20170921】(Unfinished)2017暑假北京学习 day 2
    (Unfinished)2017暑假北京学习 day 2
    Openjudge NOI题库 数论4975 两只鼹鼠
    Openjudge NOI题库 数论185 反正切函数的应用
    Noip1998 提高组3 卢斯加法表
    【自己的小玩具程序】化学方程式配平【测试中】【未完成】
    Code Vs 1010 过河卒
    NOI 练手题 图像旋转翻转变换
  • 原文地址:https://www.cnblogs.com/xiao-ju-ruo-xjr/p/6127145.html
Copyright © 2011-2022 走看看