zoukankan      html  css  js  c++  java
  • 自定义udf函数的使用

    新建df1 和 df2 两个数据源,指定数据源的中的列名和列的类型。用相同列“chanel_id”做关联,进行join outer查询, 在select取值的时候,用自定义的udf函数(get_channel_id),取两个表中不为空的“channel_id”作为结果集的数据。
    用fillna 替换结果集中的null值
    ----------------------------------------------------------------------

    from pyspark.sql.functions import udf
    df1 = spark.createDataFrame([('baidu', 1001), ('baidu', 1002), ('facebook', 3001)],
    "channel_id: string, unique_id: int")
    df2 = spark.createDataFrame([('baidu', 1, 'cc'), ('google', 1, 'pp')],
    "channel_id: string, day: int, name: string")
    print('outer')
    outer_df = df1.join(df2, df1.channel_id == df2.channel_id, 'outer')

    outer_df.show()
    @udf
    def get_channel_id(a, b):
    if a is not None:
    return a
    if b is not None:
    return b

    outer_df.select(df2.name, df1.unique_id, df2.day, get_channel_id(df1.channel_id, df2.channel_id).alias('channel_id'))
    .fillna({"unique_id": 0, "day": 0, "name": ""})
    .show()

    打印结果:

  • 相关阅读:
    xtrabackup
    spark对机器的要求
    hbase的总结
    TO B公司高效能的组织建设实践
    如何给客户展示实力
    什么样的IT队伍是好队伍
    程序员如何使用OKR
    云原生
    Flink 的18个小知识点
    apt 常用命令
  • 原文地址:https://www.cnblogs.com/xiaonanmu/p/12836362.html
Copyright © 2011-2022 走看看