题目要求:
Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.
confused what "{1,#,2,3}"
means? > read more on how binary tree is serialized on OJ.
OJ's Binary Tree Serialization:
The serialization of a binary tree follows a level order traversal, where '#' signifies a path terminator where no node exists below.
Here's an example:
1 / 2 3 / 4 5
The above binary tree is serialized as "{1,2,3,#,#,4,#,#,5}"
.
用惯性思维(即判断某节点的值与其左右子节点的值得关系)去解决这道题,相对麻烦些(花了比较多的时间,最后还是很难兼顾各种情况)。我们可以用中序遍历的方法将整棵树输出,然后再判断输出序列是否是递增序列就行了。
还有一篇博文的想法特别好,我们要将关注点放在节点本身,然后不断更新它的上下限。
具体程序如下:
1 /** 2 * Definition for a binary tree node. 3 * struct TreeNode { 4 * int val; 5 * TreeNode *left; 6 * TreeNode *right; 7 * TreeNode(int x) : val(x), left(NULL), right(NULL) {} 8 * }; 9 */ 10 class Solution { 11 public: 12 bool isValidBST(TreeNode* root) { 13 return isValidBSTSub(root, LONG_MIN, LONG_MAX); 14 } 15 16 bool isValidBSTSub(TreeNode *tree, long alpha, long beta) 17 { 18 if(!tree) 19 return true; 20 21 if(tree->val > alpha && tree->val < beta) 22 return isValidBSTSub(tree->left, alpha, tree->val) && 23 isValidBSTSub(tree->right, tree->val, beta); 24 else 25 return false; 26 } 27 };
上边程序用到了LONG_MIN、LONG_MAX,主要是为了应付比较极端的测试集。下图是C/C++中个数据类型的最大值宏定义列表: