tf.argmax
takes two arguments: input
and dimension
. example: tf.argmx(arr, dimension = 1). or tf.argmax(arr, 1). let arr is ndarray
wrong: Since the indices of array arr
are arr[rows, columns]
, I would expect tf.argmax(arr, 0)
to return the index of the maximum element per row, while I would have expected tf.argmax(arr, 1)
to return the maximum element per column. Likewise for tf.argmin
.
right understand:
Think of the dimension
argument of tf.argmax
as the axis across which you reduce.
tf.argmax(arr, 0)
reduces across dimension 0
, i.e. the rows. Reducing across rows means that you will get the argmax of each individual column.
把tf.argmax变量中的dimension理解为你需要通过轴x来降解维度。 tf.argmax(arr, 0)意味着: 穿过axis=0 (即横轴row), 穿过row(行)来降解。 而穿过行来讲解,也就是你要对每一列来进行操作。
This might be counterintuitive, but it falls in line with the conventions used in tf.reduce_max
and so on.
Additionally: how does this behave for n-dimensional Tensors? I'm a bit lost at figuring out which dimension relates to reducing i, j, k, l
or m
in a 5D-Tensor. – daniel451 Jun 29 '16 at 9:12
By definition, if you search for the maximum across rows, you are searching within columns.
For any d
-dimensional array, taking the argmax
across the i
th axis means that, for any possible combination of the d-1
remaining indices, you are searching for the maximum amongst arr[ind1, ind2, ..., ind_i_minus_1, : , ind_i_plus_1, ..., ind_d] ==》还是对列进行操作, zhi
下例中 X 定义了有784维的tf 占位符。行数没有定义 。
Y 定义了有10维的tf 占位符。行数也没有定义 。
X = tf.placeholder("float", [None, 784]) # create symbolic variables
Y = tf.placeholder("float", [None, 10])
w = init_weights([784, 10]) # like in linear regression, we need a shared variable weight matrix for logistic regression
py_x = model(X, w)。# 可以看出py_x 同Y一样是一个有10维的tf占位符。 也就是说有10个标签,10列构成的一个行向量。 行数根据可feed情况推断。
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(py_x, Y)) # compute mean cross entropy (softmax is applied internally)
train_op = tf.train.GradientDescentOptimizer(0.05).minimize(cost) # construct optimizer
predict_op = tf.argmax(py_x, 1) # at predict time, evaluate the argmax of the logistic regression # dimension =1,就是穿过列,对整行进行取最大值对应的行好。
如果不理解,往下看:
import tensorflow as tf
mygraph = tf.Graph()
with tf.Session() as sess:
x = tf.constant([1,2,3])
y = tf.constant([3,4,5])
op = tf.add(x,y)
result = sess.run(fetches = op)
print result
x = tf.constant([[1,220,55],[4,3,-1]])
with tf.Session() as sess:
result = tf.argmax(x,1) # 输出变量的索引
print sess.run(result) # output: [1 0]
x = tf.constant([[1, 220, 55], [4, 3, -1]])
x_max = tf.reduce_max(x, reduction_indices=[1])
print sess.run(x_max) # ==> "array([220, 4], dtype=int32)"