zoukankan      html  css  js  c++  java
  • tensor 维度 问题。

    tf.argmax takes two arguments: input and dimension. example: tf.argmx(arr, dimension = 1). or tf.argmax(arr, 1). let arr is ndarray

    wrong: Since the indices of array arr are arr[rows, columns], I would expect tf.argmax(arr, 0) to return the index of the maximum element per row, while I would have expected tf.argmax(arr, 1) to return the maximum element per column. Likewise for tf.argmin.

    right understand:

    Think of the dimension argument of tf.argmax as the axis across which you reduce. 

    tf.argmax(arr, 0) reduces across dimension 0, i.e. the rows. Reducing across rows means that you will get the argmax of each individual column.

    把tf.argmax变量中的dimension理解为你需要通过轴x来降解维度。 tf.argmax(arr, 0)意味着: 穿过axis=0 (即横轴row), 穿过row(行)来降解。 而穿过行来讲解,也就是你要对每一列来进行操作。 

    This might be counterintuitive, but it falls in line with the conventions used in tf.reduce_max and so on.

    Additionally: how does this behave for n-dimensional Tensors? I'm a bit lost at figuring out which dimension relates to reducing i, j, k, l or m in a 5D-Tensor. – daniel451 Jun 29 '16 at 9:12

    By definition, if you search for the maximum across rows, you are searching within columns.

    For any d-dimensional array, taking the argmax across the ith axis means that, for any possible combination of the d-1 remaining indices, you are searching for the maximum amongst arr[ind1, ind2, ..., ind_i_minus_1, : , ind_i_plus_1, ..., ind_d]  ==》还是对列进行操作, zhi

     下例中 X 定义了有784维的tf 占位符。行数没有定义 。

               Y 定义了有10维的tf 占位符。行数也没有定义 。

    X = tf.placeholder("float", [None, 784]) # create symbolic variables
    Y = tf.placeholder("float", [None, 10])
    
    w = init_weights([784, 10]) # like in linear regression, we need a shared variable weight matrix for logistic regression
    
    py_x = model(X, w)。# 可以看出py_x 同Y一样是一个有10维的tf占位符。 也就是说有10个标签,10列构成的一个行向量。  行数根据可feed情况推断。
    
    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(py_x, Y)) # compute mean cross entropy (softmax is applied internally)
    train_op = tf.train.GradientDescentOptimizer(0.05).minimize(cost) # construct optimizer
    predict_op = tf.argmax(py_x, 1) # at predict time, evaluate the argmax of the logistic regression # dimension =1,就是穿过列,对整行进行取最大值对应的行好。 

    如果不理解,往下看:

     

    import tensorflow as tf
    mygraph = tf.Graph()
    with tf.Session() as sess:
    x = tf.constant([1,2,3])
    y = tf.constant([3,4,5])

    op = tf.add(x,y)
    result = sess.run(fetches = op)
    print result

    x = tf.constant([[1,220,55],[4,3,-1]])
    with tf.Session() as sess:
    result = tf.argmax(x,1) # 输出变量的索引
    print sess.run(result) # output: [1 0]
    x = tf.constant([[1, 220, 55], [4, 3, -1]])
    x_max = tf.reduce_max(x, reduction_indices=[1])
    print sess.run(x_max) # ==> "array([220, 4], dtype=int32)"

  • 相关阅读:
    vue系列---identify(生成图片验证码)插件
    vue中的锚链接跳转问题
    vue中怎样实现 路由拦截器
    Vue生命周期和考点
    Vue如何使用vue-area-linkage实现地址三级联动效果
    JS的Key-Val(键值对)设置Key为动态的方法
    web开发——在网页中引用字体包(.ttf),即嵌入特殊字体
    spring boot 实现多个 interceptor 并指定顺序
    BigDecimal加减乘除计算
    乐观锁解决并发问题
  • 原文地址:https://www.cnblogs.com/xinping-study/p/7160833.html
Copyright © 2011-2022 走看看