zoukankan      html  css  js  c++  java
  • 【AI图像识别三】人脸对比测试

    ****************************************************************************

    本文主要介绍AI图像识别人脸对比测试

      1.测试需求分析

      2.测试环境准备

      3.测试数据准备

      4.测试分析与执行

      5.测试问题总结

    ****************************************************************************

    一、需求分析

    1)功能需求

    AI照片自动归属(离线模型):识别园长、教师、家长、亲友在成长时光、班级圈、亲子活动里面上传的照片,并与人脸基准库进行比对,得到照片的唯一标识和其中所包含孩子的唯一标识(集体照片可包含多个孩子)最终生成幼儿成长档案

    2)测试需求点:

    人脸基准库功能测试

    人脸比对功能/模型评估测试

    自动归属集成测试(现网定时任务测试)

    3)图片比对流程图

     

    二、测试环境准备(安装依赖包、TensorFlow库问题解决)

    1) 安装依赖包(17个依赖包)

    2)依赖Anaconda环境安装TensorFlow库,见下链接:

    https://www.cnblogs.com/xjx767361314/p/11103817.html

    三、测试数据的准备(与算法工程讨论的结果)

    1)数据收集

    幼儿:3--6周岁宝贝

    照片格式:png,jpg

    图片要求:基准库(最好正面上身照1个) 日常图片(5张左右)

    图片关键信息:正面、侧面、单人照、集体照

    2) 幼儿图片数据标注记录

     

     3)幼儿数据标记后

    四、测试执行与结果统计

    1)分析测试过程: 首先生成幼儿基准库的特征向量,然后输入不同类型的待识别图片,根据数据标注验证图片的比对结果,统计比对结果输出模型评估效果

    2)执行脚本,进行幼儿图片比对

     

    3)识别结果分析(手工的方式比对执行结果,效率略低)

    4)比对结果统计

    五、测试问题总结

    1)测试需求阶段没有明确模型效果,只对集体照片和模糊照模型效果不理想的情况进行了优化,测试不严谨。

    2) 测试环境准备耗时4天,测试时间才4天,主要问题是第一次安装AI图片识别方向依赖包,tensorflow安装报错,最后发现与底层glibc库不兼容,其次是安装包近17个,相互存在依赖关系,利用国内镜像加快了安装速度。

    3)现网的模型效果不是很好,主要原因是模型没有经过实际场景的数据训练,其实测试数据不足,而且与现网数据可能存在差异,收集的测试集可能太过理想,实际幼儿图片质量不高,以后测试应该尽量收集贴近实际场景的数据。

    4)测试数据标记没有专门的数据标注员,测试人员手工标记数据,如果测试数据量大势必增加时间成本,还在寻找好的方法。

    5) 测试结果比对效率低,目前是根据标注的数据与测试结果数据进行一一比对分析,根据项目情况尽量实现自动化校验,自动化输出结果统计。

  • 相关阅读:
    Android系统编程入门系列之应用权限的定义与申请
    Android系统编程入门系列之应用间数据共享ContentProvider
    微服务与架构师
    一个C#开发者用Java搭建Android框架的心路历程
    学习使用Wpf开源的文本编辑器—smithhtmleditor
    聊聊 Kubernetes Pod or Namespace 卡在 Terminating 状态的场景
    写给自己看的的密码学知识
    pymongo基础操作
    1103-词牌名,合称,诗词形式
    1102-诗词类别补充与pyhanlp探索
  • 原文地址:https://www.cnblogs.com/xjx767361314/p/12527421.html
Copyright © 2011-2022 走看看