zoukankan      html  css  js  c++  java
  • tensorboard —— 利用mnist展示tensorboard的基本功能

    如下文件,使用 tensorflow中最基础的入门学习例子 mnist,以最直观最简单的方式展示了tensorboard的使用方法

    其中包括tensorboard的:scalar、image、histogram、以及特征空间降为展示的代码。

    tensorboard_test.py

    #coding:utf-8
    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    import time
    import os
    import PROJECTOR_visual
    
    """
    权重初始化
    初始化为一个接近0的很小的正数
    """
    def weight_variable(shape):
        initial = tf.truncated_normal(shape, stddev = 0.1)
        return tf.Variable(initial)
    
    def bias_variable(shape):
        initial = tf.constant(0.1, shape = shape)
        return tf.Variable(initial)
    
    """
    卷积和池化,使用卷积步长为1(stride size),0边距(padding size)
    池化用简单传统的2x2大小的模板做max pooling
    """
    def conv2d(x, W):
        return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding = 'SAME')
        # tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None)
        # x(input)  : [batch, in_height, in_width, in_channels]
        # W(filter) : [filter_height, filter_width, in_channels, out_channels]
        # strides   : The stride of the sliding window for each dimension of input.
        #             For the most common case of the same horizontal and vertices strides, strides = [1, stride, stride, 1]
    
    def max_pool_2x2(x):
        return tf.nn.max_pool(x, ksize = [1, 2, 2, 1],
                              strides = [1, 2, 2, 1], padding = 'SAME')
        # tf.nn.max_pool(value, ksize, strides, padding, data_format='NHWC', name=None)
        # x(value)              : [batch, height, width, channels]
        # ksize(pool大小)        : A list of ints that has length >= 4. The size of the window for each dimension of the input tensor.
        # strides(pool滑动大小)   : A list of ints that has length >= 4. The stride of the sliding window for each dimension of the input tensor.
    
    
    start = time.clock() #计算开始时间
    mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) #MNIST数据输入
    
    os.system("python create_sprite.py")
    
    
    """
    第一层 卷积层
    
    x_image(batch, 28, 28, 1) -> h_pool1(batch, 14, 14, 32)
    """
    x = tf.placeholder(tf.float32,[None, 784])
    x_image = tf.reshape(x, [-1, 28, 28, 1]) #最后一维代表通道数目,如果是rgb则为3 
    
    tf.summary.image('input_image', x_image, 10)
    
    W_conv1 = weight_variable([5, 5, 1, 32])
    b_conv1 = bias_variable([32])
    
    tf.summary.histogram('W_conv1',W_conv1)
    tf.summary.histogram('b_conv1',b_conv1)
    
    conv1 = conv2d(x_image, W_conv1) + b_conv1
    
    h_conv1 = tf.nn.relu(conv1)
    # x_image -> [batch, in_height, in_width, in_channels]
    #            [batch, 28, 28, 1]
    # W_conv1 -> [filter_height, filter_width, in_channels, out_channels]
    #            [5, 5, 1, 32]
    # output  -> [batch, out_height, out_width, out_channels]
    #            [batch, 28, 28, 32]
    h_pool1 = max_pool_2x2(h_conv1)
    # h_conv1 -> [batch, in_height, in_weight, in_channels]
    #            [batch, 28, 28, 32]
    # output  -> [batch, out_height, out_weight, out_channels]
    #            [batch, 14, 14, 32]
    
    """
    第二层 卷积层
    
    h_pool1(batch, 14, 14, 32) -> h_pool2(batch, 7, 7, 64)
    """
    W_conv2 = weight_variable([5, 5, 32, 64])
    b_conv2 = bias_variable([64])
    
    tf.summary.histogram('W_conv2',W_conv2)
    tf.summary.histogram('b_conv2',b_conv2)
    
    conv2 = conv2d(h_pool1, W_conv2) + b_conv2
    
    h_conv2 = tf.nn.relu(conv2)
    # h_pool1 -> [batch, 14, 14, 32]
    # W_conv2 -> [5, 5, 32, 64]
    # output  -> [batch, 14, 14, 64]
    h_pool2 = max_pool_2x2(h_conv2)
    # h_conv2 -> [batch, 14, 14, 64]
    # output  -> [batch, 7, 7, 64]
    
    """
    反卷积层,为了输出图像而加入的
    """
    reverse_weight1 = weight_variable([5,5,32,64])
    reverse_conv1 = tf.nn.conv2d_transpose(conv2,reverse_weight1,[50,14,14,32],strides=[1,1,1,1],padding="SAME")
    reverse_weight2 = weight_variable([5,5,1,32])
    reverse_conv2 = tf.nn.conv2d_transpose(reverse_conv1,reverse_weight2,[50,28,28,1],strides=[1,2,2,1],padding="SAME")
    
    reverse_weight3 = weight_variable([5,5,1,32])
    reverse_conv3 = tf.nn.conv2d_transpose(conv1,reverse_weight3,[50,28,28,1],strides=[1,1,1,1],padding="SAME")
    tf.summary.image("reverse_conv2",reverse_conv2,10)
    tf.summary.image("reverse_conv1",reverse_conv3,10)
    
    
    """
    第三层 全连接层
    
    h_pool2(batch, 7, 7, 64) -> h_fc1(1, 1024)
    """
    W_fc1 = weight_variable([7 * 7 * 64, 1024])
    b_fc1 = bias_variable([1024])
    
    tf.summary.histogram('W_fc1',W_fc1)
    tf.summary.histogram('b_fc1',b_fc1)
    
    h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
    
    """
    Dropout
    
    h_fc1 -> h_fc1_drop, 训练中启用,测试中关闭
    """
    keep_prob = tf.placeholder("float")
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
    
    """
    第四层 Softmax输出层
    """
    W_fc2 = weight_variable([1024, 10])
    b_fc2 = bias_variable([10])
    
    y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
    
    """
    训练和评估模型
    
    ADAM优化器来做梯度最速下降,feed_dict中加入参数keep_prob控制dropout比例
    """
    y_ = tf.placeholder("float", [None, 10])
    cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv)) #计算交叉熵
    
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) #使用adam优化器来以0.0001的学习率来进行微调
    correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1)) #判断预测标签和实际标签是否匹配
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float"))
    
    tf.summary.scalar('cross_entropy', cross_entropy)
    tf.summary.scalar('accuracy', accuracy)
    
    merged = tf.summary.merge_all()
    
    sess = tf.Session() #启动创建的模型
    
    writer = tf.summary.FileWriter("logs/", sess.graph)
    
    #sess.run(tf.initialize_all_variables()) #旧版本
    sess.run(tf.global_variables_initializer()) #初始化变量
    
    for i in range(PROJECTOR_visual.TRAINING_STEPS): #开始训练模型,循环训练5000次
        batch = mnist.train.next_batch(50) #batch大小设置为50
        if i % 100 == 0:
            train_accuracy = accuracy.eval(session = sess,
                                           feed_dict = {x:batch[0], y_:batch[1], keep_prob:1.0})
            print("step %d, train_accuracy %g" %(i, train_accuracy))
        sess.run(train_step, feed_dict = {x:batch[0], y_:batch[1],
                       keep_prob:0.5}) #神经元输出保持不变的概率 keep_prob 为0.5
        rs, _=sess.run([merged, train_step], feed_dict={x:batch[0], y_:batch[1], keep_prob:1.0})
        writer.add_summary(rs, i)
    
    final_result = sess.run(h_fc1, feed_dict={x:mnist.test.images})
    
    print("test accuracy %g" %accuracy.eval(session = sess,
          feed_dict = {x:mnist.test.images, y_:mnist.test.labels,
                       keep_prob:1.0})) #神经元输出保持不变的概率 keep_prob 为 1,即不变,一直保持输出
    
    PROJECTOR_visual.visualisation(final_result)
    

     

    PPROJECTOR_visual.py

    import tensorflow as tf
    import os
    import tqdm
    
    from tensorflow.contrib.tensorboard.plugins import projector
    
    TRAINING_STEPS = 1000
    
    LOG_DIR = 'logs'
    SPRITE_FILE = 'mnist_sprite.jpg'
    META_FIEL = "mnist_meta.tsv"
    TENSOR_NAME = "FINAL_LOGITS"
    
    
    # 生成可视化最终输出层向量所需要的日志文件
    def visualisation(final_result):
        # 使用一个新的变量来保存最终输出层向量的结果,因为embedding是通过Tensorflow中变量完成的,所以PROJECTOR可视化的都是TensorFlow中的变哇。
        # 所以这里需要新定义一个变量来保存输出层向量的取值
        y_visual = tf.Variable(final_result, name=TENSOR_NAME)
        summary_writer = tf.summary.FileWriter(LOG_DIR)
    
        # 通过project.ProjectorConfig类来帮助生成日志文件
        config = projector.ProjectorConfig()
        # 增加一个需要可视化的bedding结果
        embedding = config.embeddings.add()
        # 指定这个embedding结果所对应的Tensorflow变量名称
        embedding.tensor_name = y_visual.name
    
        # Specify where you find the metadata
        # 指定embedding结果所对应的原始数据信息。比如这里指定的就是每一张MNIST测试图片对应的真实类别。在单词向量中可以是单词ID对应的单词。
        # 这个文件是可选的,如果没有指定那么向量就没有标签。
        embedding.metadata_path = META_FIEL
    
        # Specify where you find the sprite (we will create this later)
        # 指定sprite 图像。这个也是可选的,如果没有提供sprite 图像,那么可视化的结果
        # 每一个点就是一个小困点,而不是具体的图片。
        embedding.sprite.image_path = SPRITE_FILE
        # 在提供sprite图像时,通过single_image_dim可以指定单张图片的大小。
        # 这将用于从sprite图像中截取正确的原始图片。
        embedding.sprite.single_image_dim.extend([28, 28])
    
        # Say that you want to visualise the embeddings
        # 将PROJECTOR所需要的内容写入日志文件。
        projector.visualize_embeddings(summary_writer, config)
    
        # 生成会话,初始化新声明的变量并将需要的日志信息写入文件。
        sess = tf.InteractiveSession()
        sess.run(tf.global_variables_initializer())
        saver = tf.train.Saver()
        saver.save(sess, os.path.join(LOG_DIR, "model"), TRAINING_STEPS)
    
        summary_writer.close()
    

    将两个 .py文件放在同一个文件夹下,然后运行的时候,直接使用cmd,执行 python tensorboard_test.py,便可以启动。

    然后在浏览器上输入:http://localhost:8080  便可以打开 tensorboard画面

  • 相关阅读:
    Kubelet 会做些什么
    k8s apiserver 源码阅读笔记
    robotframework环境安装
    Hper-V卸载
    Hyper-V安装虚拟机
    git下载/上传文件提示:git did not exit cleanly
    jmeter使用csv传参进行并发测试验证
    jenkins启动
    win7系统中 python2、python3安装后再安装插件时遇到的问题
    Base.py最基层的一些方法的封装--自己整理的一些小内容
  • 原文地址:https://www.cnblogs.com/xuyong437/p/11202047.html
Copyright © 2011-2022 走看看