interlinkage:
https://ac.nowcoder.com/acm/contest/847/F
description:
solution:
- 最大权闭合子图;
- 每个单元格看成一个正权点,每一行每一列分别看成一个负权点。各自的点权就是其对应获得或者是消耗的能量(获得为正,消耗为负);
- 每个单元格向所在行对应的点连inf边,所在列对应的点连inf边,表示选择这个单元格就必须选择其所在行和所在列;
- 对于每一个关联奖励,新建一个点权为k的点。新建点向四个对应的行,列节点连inf边;
- 源点向所有正权点连边,边权为正权点的权值。所有负权点向汇点连边,边权为负权点的权值的绝对值;
- 答案=正权点权值之和-最小割;
code:
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<iostream>
#include<queue>
using namespace std;
const int N=1e6+15;
const int inf=1e9+7;
int n,m,tot=1,S,T;
int head[N],cur[N],dep[N];
struct EDGE
{
int to,nxt,cap;
}edge[N<<1];
inline int read()
{
char ch=getchar();int s=0,f=1;
while (ch<'0'||ch>'9') {if (ch=='-') f=-1;ch=getchar();}
while (ch>='0'&&ch<='9') {s=(s<<3)+(s<<1)+ch-'0';ch=getchar();}
return s*f;
}
void add(int u,int v,int w)
{
edge[++tot]=(EDGE){v,head[u],w};head[u]=tot;
edge[++tot]=(EDGE){u,head[v],0};head[v]=tot;
}
int getid(int x,int y)
{
return (x-1)*n+y+2*n;
}
queue <int> q;
int bfs()
{
memset(dep,0,sizeof(dep));
while (!q.empty()) q.pop();
dep[S]=1;
q.push(S);
while (!q.empty())
{
int k=q.front();q.pop();
for (int i=head[k];i;i=edge[i].nxt)
{
int y=edge[i].to;
if (!dep[y]&&edge[i].cap)
{
dep[y]=dep[k]+1;
q.push(y);
}
}
}
return dep[T];
}
int dfs(int x,int a)
{
if (!a||x==T) return a;
int f,flow=0;
for (int &i=cur[x];i;i=edge[i].nxt)
{
int y=edge[i].to;
if (dep[y]==dep[x]+1&&(f=dfs(y,min(edge[i].cap,a)))>0)
{
edge[i].cap-=f;
edge[i^1].cap+=f;
flow+=f;
a-=f;
if (!a) break;
}
}
return flow;
}
int dinic()
{
int ans=0;
while (bfs())
{
memcpy(cur,head,sizeof(head));
ans+=dfs(S,inf);
}
return ans;
}
int main()
{
n=read();m=read();
S=0;T=n*n+2*n+1;
int sum=0;
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
{
int c=read(),now=getid(i,j);
sum+=c;
add(S,now,c);
add(now,i,inf);
add(now,j+n,inf);
}
for (int i=1;i<=n;i++) add(i,T,read());
for (int i=1;i<=n;i++) add(i+n,T,read());
for (int i=1;i<=m;i++)
{
int i1=read(),j1=read(),i2=read(),j2=read(),k=read();
sum+=k;
add(S,T+i,k);
add(T+i,i1,inf);add(T+i,j1+n,inf);
add(T+i,i2,inf);add(T+i,j2+n,inf);
}
printf("%d
",sum-dinic());
return 0;
}