zoukankan      html  css  js  c++  java
  • python中的函数、生成器的工作原理

    1.python中函数的工作原理

    def foo():
        bar()
    
    def bar():
        pass

    python的解释器,也就是python.exe(c编写)会用PyEval_EvalFramEx(c函数)运行foo()函数
    首先会创建一个栈帧(stack Frame),在栈帧对象的上下文里面去运行这个字节码。

    import dis
    print(dis.dis(foo))  #打印字节码

      可以尝试着去打印foo的字节码:

    关于字节码的解释:

      LOAD_GLOBAL:首先导入bar这个函数
      CALL_FUNCTION:执行bar函数
      POP_TOP:从栈的顶端去把元素打印出来
      LOAD_CONST:返回结果,这里没有return,就是None
      RETURN_VALUE:返回结果

    打印bar的字节码:

    print(dis.dis(bar))

    这个字节码全局是唯一的,函数是全局唯一的,然后在函数里面会调用另外一个函数。
    当foo调用函数bar,又会创建一个栈帧,然后将这个函数的控制权交给这个栈帧。
    所有的栈帧都分配在内存中,它不是放在栈的内存上,而是放在堆的内存上,你不去释放它就会一直存在我们的内存当中。
    这就决定了栈帧可以独立于调用者存在,比如就算函数不存在了,只要有指针指向bar这个栈帧,就可以对其进行控制。
    (python中一切皆对象,栈帧也是对象,是一个字节码对象)

    import inspect
    frame = None  #保存frame
    
    def foo():
        bar()
    
    def bar():
        global frame  #引入全局变量
        frame = inspect.currentframe()  #将bar的frame赋给全局变量
    
    foo()
    print(frame.f_code.co_name)  #bar  函数退出之后,依然可以拿到bar函数的栈帧
    caller_frame = frame.f_back
    print(caller_frame.f_code.co_name)  #foo  也可以拿到foo函数的栈帧 

    2.生成器的实现原理

    在静态语言中,函数调用的时候是一个栈的形式,函数调用完成之后栈就会被销毁。
    下面是函数的调用过程:

    PyEval_evalFrameEx会创建一个foo的栈帧对象,这个对象里面有两个属性。f_back为None,因为没有上层函数,f_code指向foo的字节码
    同时PyEval_evalFrameEx也会创建一个bar的栈帧对象,f_back指向foo,f_code指向bar的字节码。
    最大的特点就是栈帧对象存在于堆内存中,这样生成器才有实现的可能。

    def gen_func():
        yield 1
        name = "ming"
        yield 2
        age = 28
        return "kebi"  #在早期的生成器版本中不能使用return

    当python解释器在读取gen_fun()这个函数的时候,发现yield关键字就会将其标记为生成器函数。
    gen_func()
    当我们来调用这个函数的时候,就会返回一个生成器对象。
    这个生成器对象是将PyFrame做了一层封装。

     

    在PyFrameObject和PyCodeObject上面又封装了一层PyGenObject,就是python的生成器对象。
    PyGenObject中gi_frame属性指向PyGrameObject,gi_code属性指向PyCodeObject。
    PyFrameObject又有f_lasti和f_locals属性。
    f_lasti会指向最近执行的这个代码。

    可以尝试打印字节码:

    def gen_func():
        yield 1
        name = "ming"
        yield 2
        age = 28
        return "kebi"  #在早期的生成器版本中不能使用return
        
    import dis
    gen = gen_func()
    print(dis.dis(gen))

     查看结果:

    这里面可以看到有两次yield。当我们每一次对生成器做一次调用的时候,它遇到yield就会停止。
    停止了之后,就会记录f_lasti(位置)和f_locals(变量)这两个值。

    可以尝试着调用打印取每一个值,f_lasti和f_locals的变化

    print(gen.gi_frame.f_lasti)  #-1
    print(gen.gi_frame.f_locals) #{}
    next(gen)                       
    print(gen.gi_frame.f_lasti)  #2
    print(gen.gi_frame.f_locals) #{}
    next(gen)
    print(gen.gi_frame.f_lasti)  #12
    print(gen.gi_frame.f_locals) #{'name':'ming'}

    与上方字节码是一样的。

    这样整个生成器对象就存在与堆内存中,可以独立存在,每次执行一次函数,就会生成一个栈帧对象。
    我们可以在任何地方,只要能拿到这个栈帧对象就能够往前走。这也是python中协程的一个理论基础。

    此时我们可以知道为什么生成器是一个一个返回。

    3.pyc文件

    当你在执行python代码的时候,会发现执行目录下面会出现.pyc文件。

    [root@tuoguan resources]# ls
    r1.py  r1.pyc  r2.py  r3.py
    [root@tuoguan resources]# cat r1.pyc
     
    ¶:]c@s
    dZdS(tname_r1N(R(((s/tmp/demo/resources/r1.py<module>s

    r1.pyc是一个二进制文件,当执行的文件中存在包的引入就会编译生成二进制文件。

    当python程序运行时,编译的结果则是保存在位于内存中的PyCodeObject中,当Python程序运行结束时,Python解释器则将PyCodeObject写回到pyc文件中。

    当python程序第二次运行时,首先程序会在硬盘中寻找pyc文件,如果找到,则直接载入,否则就重复上面的过程。

    所以我们应该这样来定位PyCodeObject和pyc文件,我们说pyc文件其实是PyCodeObject的一种持久化保存方式。

  • 相关阅读:
    Javascript中得到中英文混合字符串的长度
    通往幸福之路之贷款篇
    骠叔
    神医
    买酱油与软件工程阶段划分
    XSLT中用normalizespace函数来清除元素的前后空格
    论屎
    Web程序中利用web.config解决无法输出excel页面的问题
    项目打单时该写什么文挡
    天桥底下是我家
  • 原文地址:https://www.cnblogs.com/yangmingxianshen/p/11252541.html
Copyright © 2011-2022 走看看