zoukankan      html  css  js  c++  java
  • Spark之RDD算子练习

    RDD算子的分类

    Transformation(转换):根据数据集创建一个新的 数据集,计算后返回一个新的RDD。例如,一个RDD进行map操作后,生成了新的RDD。

    Action(动作):对RDD结果计算返回一个数值value给驱动程序,或者把结果存储到外部存储系统中;

    例如:collect算子将数据集的所有元数据收集完成返回给驱动程序。

    Transformation

    RDD中的所有转换都是延迟加载的,也就是说,他们并不会直接计算结果。相反的,他们只是记住这些应用到基础数据集(例如一个文件)上转换动作。只有当发生一个要求返回结果给Driver的动作或者将结果写入到外部存储中,这写转换才会真正的运行,这种设计让Spark更加有效率的运行。

    Action

    Action算子返回结果或保存结果,如count,collect,save等,Action操作是返回结果或将结果写入存储的操作,Action是Spark应用程序真正执行的触发动作 .

    Transformation算子练习

    map(func)

    说明:返回一个新的RDD,该RDD由每一个输入元素经过func函数转换后组成
    scala> var source  = sc.parallelize(1 to 10)
    source: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:24
    
    scala> source.collect()
    res0: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
    
    scala> val result1 = source.map(_ * 3)
    result1: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[1] at map at <console>:25
    
    scala> result1.collect()
    res1: Array[Int] = Array(3, 6, 9, 12, 15, 18, 21, 24, 27, 30)

    mapPartitions(func)

    l类似于map,但独立地在RDD的每一个分片上运行,因此在类型为T的RDD上运行时,func的函数类型必须是Iterator[T] => Iterator[U]。
    假设有N个元素,有M个分区,那么map的函数的将被调用N次,而mapPartitions被调用M次,一个函数一次处理所有分区
    scala> val rdd=sc.parallelize(List(("zhangsan","male"),("xiaohong","female"),("lisi","male"),("rose","female")))
    rdd: org.apache.spark.rdd.RDD[(String, String)] = ParallelCollectionRDD[2] at parallelize at <console>:24
    
    scala> :paste
    // Entering paste mode (ctrl-D to finish)
    
    def partitionsFun(iter : Iterator[(String,String)]) : Iterator[String] = {
      var woman = List[String]()
      while (iter.hasNext){
        val next = iter.next()
        next match {
           case (_,"female") => woman = next._1 :: woman
           case _ =>
        }
      }
      woman.iterator
    }
    
    // Exiting paste mode, now interpreting.
    
    partitionsFun: (iter: Iterator[(String, String)])Iterator[String]
    
    scala> val result=rdd.mapPartitions(partitionsFun)
    result: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[3] at mapPartitions at <console>:27
    
    scala> result.collect()
    res0: Array[String] = Array(xiaohong, rose)  

    glom

    将每一个分区形成一个数组,形成新的RDD类型时RDD[Array[T]]
    scala> val rdd=sc.parallelize(1 to 16,4)
    rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:24
    
    scala> rdd.glom().collect()
    res0: Array[Array[Int]] = Array(Array(1, 2, 3, 4), Array(5, 6, 7, 8), Array(9, 10, 11, 12), Array(13, 14, 15, 16))

    flatMap(func)

    类似于map,但是每一个输入元素可以被映射为0或多个输出元素(所以func应该返回一个序列,而不是单一元素)
    scala> val sourceFlat=sc.parallelize(1 to 5)
    sourceFlat: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:24
    
    scala> sourceFlat.collect()
    res0: Array[Int] = Array(1, 2, 3, 4, 5)
    
    scala> val flatMap=sourceFlat.flatMap(1 to _)
    flatMap: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[1] at flatMap at <console>:25
    
    scala> flatMap.collect()
    res1: Array[Int] = Array(1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5)

    filter(func)

    返回一个新的RDD,该RDD由经过func函数计算后返回值为true的输入元素组成
    scala> var sourceFilter=sc.parallelize(Array("zhangsan","lisi","wangwu","zhaoliu"))
    sourceFilter: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[2] at parallelize at <console>:24
    
    scala> val filter=sourceFilter.filter(_.contains("zhang"))
    filter: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[3] at filter at <console>:25
    
    scala> sourceFilter.collect()
    res2: Array[String] = Array(zhangsan, lisi, wangwu, zhaoliu)
    
    scala> filter.collect()
    res3: Array[String] = Array(zhangsan)

    mapPartitionsWithIndex(func)

    类似于mapPartitions,但func带有一个整数参数表示分片的索引值,因此在类型为T的RDD上运行时,
    func的函数类型必须是(Int, Interator[T]) => Iterator[U]
    scala> val rdd=sc.parallelize(List(("zhangsan","male"),("xiaohong","female"),("lisi","male"),("huahua",ale")))
    rdd: org.apache.spark.rdd.RDD[(String, String)] = ParallelCollectionRDD[4] at parallelize at <console>:
    
    scala> :paste
    // Entering paste mode (ctrl-D to finish)
    
    def partitionsFun(index : Int, iter : Iterator[(String,String)]) : Iterator[String] = {
      var woman = List[String]()
      while (iter.hasNext){
        val next = iter.next()
        next match {
           case (_,"female") => woman = "["+index+"]"+next._1 :: woman
           case _ =>
        }
      }
      woman.iterator
    }
    
    // Exiting paste mode, now interpreting.
    
    partitionsFun: (index: Int, iter: Iterator[(String, String)])Iterator[String]
    
    scala> val result=rdd.mapPartitionsWithIndex(partitionsFun)
    result: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[5] at mapPartitionsWithIndex at <console>:27
    
    scala> result.collect()
    res4: Array[String] = Array([1]xiaohong, [3]huahua)

    sample(withReplacement, fraction, seed)

    以指定的随机种子随机抽样出数量为fraction的数据,withReplacement表示是抽出的数据是否放回,true为有放回的抽样,false为无放回的抽样
    ,seed用于指定随机数生成器种子。例子从RDD中随机且有放回的抽出50%的数据,随机种子值为3(即可能以1 2 3的其中一个起始值)
    scala> val rdd=sc.parallelize(1 to 10)
    rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[8] at parallelize at <console>:24
    
    scala> rdd.collect()
    res7: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
    
    scala> var sample1=rdd.sample(true,0.4,2)
    sample1: org.apache.spark.rdd.RDD[Int] = PartitionwiseSampledRDD[9] at sample at <console>:25
    
    scala> sample1.collect()
    res8: Array[Int] = Array(1, 2, 2, 7, 7, 8, 9)
    
    scala> var sample2=rdd.sample(false,0.2,3)
    sample2: org.apache.spark.rdd.RDD[Int] = PartitionwiseSampledRDD[10] at sample at <console>:25
    
    scala> sample2.collect()
    res9: Array[Int] = Array(1, 9)

    distinct([numTasks]))

    对源RDD进行去重后返回一个新的RDD. 默认情况下,只有8个并行任务来操作,但是可以传入一个可选的numTasks参数改变它。
    scala> val distinctRdd=sc.parallelize(List(1,2,1,5,2,9,6,1))
    distinctRdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[11] at parallelize at <console>:24
    
    scala> val unionRdd=distinctRdd.distinct()
    unionRdd: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[14] at distinct at <console>:25
    
    scala> unionRdd.collect()
    res10: Array[Int] = Array(1, 9, 5, 6, 2)
    
    scala> val unionRdd=distinctRdd.distinct(2)
    unionRdd: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[17] at distinct at <console>:25
    
    scala> unionRdd.collect()
    res11: Array[Int] = Array(6, 2, 1, 9, 5)

    partitionBy

    对RDD进行分区操作,如果原有的partionRDD和现有的partionRDD是一致的话就不进行分区, 否则会生成ShuffleRDD。
    scala> val rdd=sc.parallelize(Array((1,"aa"),(2,"bb"),(3,"cc"),(4,"dd")),4)
    rdd: org.apache.spark.rdd.RDD[(Int, String)] = ParallelCollectionRDD[20] at parallelize at <console>:24
    
    scala> rdd.partitions.size
    res15: Int = 4
    
    scala> var rdd2=rdd.partitionBy(new org.apache.spark.HashPartitioner(2))
    rdd2: org.apache.spark.rdd.RDD[(Int, String)] = ShuffledRDD[21] at partitionBy at <console>:25
    
    scala> rdd2.partitions.size
    res16: Int = 2

    coalesce(numPartitions)

    与repartition的区别: repartition(numPartitions:Int):RDD[T]和coalesce(numPartitions:Int,shuffle:Boolean=false):RDD[T] repartition只是coalesce接口中shuffle为true的实现.
    缩减分区数,用于大数据集过滤后,提高小数据集的执行效率。
    scala> val rdd=sc.parallelize(1 to 16,4)
    rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[23] at parallelize at <console>:24
    
    scala> rdd.partitions.size
    res18: Int = 4
    
    scala> val coalesceRDD=rdd.coalesce(3)
    coalesceRDD: org.apache.spark.rdd.RDD[Int] = CoalescedRDD[24] at coalesce at <console>:25
    
    scala> coalesceRDD.partitions.size
    res19: Int = 3

    repartition(numPartitions)

    根据分区数,从新通过网络随机洗牌所有数据。
    scala> val rdd = sc.parallelize(1 to 16,4)
    rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[25] at parallelize at <console>:24
    
    scala> rdd.partitions.size
    res20: Int = 4
    
    scala> val rerdd = rdd.repartition(2)
    rerdd: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[29] at repartition at <console>:25
    
    scala> rerdd.partitions.size
    res21: Int = 2
    
    scala> val rerdd = rdd.repartition(4)
    rerdd: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[33] at repartition at <console>:25
    
    scala> rerdd.partitions.size
    res22: Int = 4

    sortBy(func,[ascending], [numTasks])

    用func先对数据进行处理,按照处理后的数据比较结果排序。
    scala> val rdd = sc.parallelize(List(1,2,3,4))
    rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[34] at parallelize at <console>:24
    
    scala> rdd.sortBy(x => x).collect()
    res23: Array[Int] = Array(1, 2, 3, 4)
    
    scala> rdd.sortBy(x => x%3).collect()
    res24: Array[Int] = Array(3, 1, 4, 2)

    union(otherDataset)

    对源RDD和参数RDD求并集后返回一个新的RDD  不去重
    scala> val rdd1 = sc.parallelize(1 to 5)
    rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[45] at parallelize at <console>:24
    
    scala> val rdd2 = sc.parallelize(5 to 10)
    rdd2: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[46] at parallelize at <console>:24
    
    scala> val rdd3 = rdd1.union(rdd2)
    rdd3: org.apache.spark.rdd.RDD[Int] = UnionRDD[47] at union at <console>:27
    
    scala> rdd3.collect()
    res25: Array[Int] = Array(1, 2, 3, 4, 5, 5, 6, 7, 8, 9, 10)

    subtract (otherDataset)

    计算差的一种函数,去除两个RDD中相同的元素,不同的RDD将保留下来 
    scala> val rdd = sc.parallelize(3 to 8)
    rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[48] at parallelize at <console>:24
    
    scala> val rdd1 = sc.parallelize(1 to 5)
    rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[49] at parallelize at <console>:24
    
    scala> rdd.subtract(rdd1).collect()
    res26: Array[Int] = Array(8, 6, 7)

    intersection(otherDataset)

    对源RDD和参数RDD求交集后返回一个新的RDD
    scala> val rdd1 = sc.parallelize(1 to 7)
    rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[54] at parallelize at <console>:24
    
    scala> val rdd2 = sc.parallelize(5 to 10)
    rdd2: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[55] at parallelize at <console>:24
    
    scala> val rdd3 = rdd1.intersection(rdd2)
    rdd3: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[61] at intersection at <console>:27
    
    scala> rdd3.collect()
    res27: Array[Int] = Array(5, 6, 7)

    cartesian(otherDataset)

    笛卡尔积
    scala> val rdd1 = sc.parallelize(1 to 3)
    rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[62] at parallelize at <console>:24
    
    scala> val rdd2 = sc.parallelize(2 to 5)
    rdd2: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[63] at parallelize at <console>:24
    
    scala> rdd1.cartesian(rdd2).collect()
    res28: Array[(Int, Int)] = Array((1,2), (1,3), (1,4), (1,5), (2,2), (2,3), (2,4), (2,5), (3,2), (3,3), (3,4), (3,5))

    pipe(command, [envVars])

    管道,对于每个分区,都执行一个perl或者shell脚本,返回输出的RDD
    Shell脚本pipe.sh:
    #!/bin/sh
    echo "AA"
    while read LINE; do
       echo ">>>"${LINE}
    done
    
    
    scala> val rdd = sc.parallelize(List("hi","Hello","how","are","you"),1)
    rdd: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[21] at parallelize at <console>:24
    
    scala> rdd.pipe("/opt/spark/pipe.sh").collect
    res9: Array[String] = Array(AA, >>>hi, >>>Hello, >>>how, >>>are, >>>you)
    
    scala>  val rdd = sc.parallelize(List("hi","Hello","how","are","you"),2)
    rdd: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[23] at parallelize at <console>:24
    
    scala> rdd.pipe("/opt/spark/pipe.sh").collect
    res10: Array[String] = Array(AA, >>>hi, >>>Hello, AA, >>>how, >>>are, >>>you)
    运行rdd.pipe("/opt/spark/pipe.sh").collect可能出现权限问题
    给权限:chmod
    777 /opt/spark/pipr.sh

    join(otherDataset, [numTasks])

    在类型为(K,V)和(K,W)的RDD上调用,返回一个相同key对应的所有元素对在一起的(K,(V,W))的RDD
    scala> val rdd = sc.parallelize(Array((1,"a"),(2,"b"),(3,"c")))
    rdd: org.apache.spark.rdd.RDD[(Int, String)] = ParallelCollectionRDD[65] at parallelize at <console>:24
    
    scala>  val rdd1 = sc.parallelize(Array((1,4),(2,5),(3,6)))
    rdd1: org.apache.spark.rdd.RDD[(Int, Int)] = ParallelCollectionRDD[66] at parallelize at <console>:24
    
    scala> rdd.join(rdd1).collect()
    res29: Array[(Int, (String, Int))] = Array((1,(a,4)), (2,(b,5)), (3,(c,6)))

    cogroup(otherDataset, [numTasks])

    在类型为(K,V)和(K,W)的RDD上调用,返回一个(K,(Iterable<V>,Iterable<W>))类型的RDD
    scala> val rdd = sc.parallelize(Array((1,"a"),(2,"b"),(3,"c")))
    rdd: org.apache.spark.rdd.RDD[(Int, String)] = ParallelCollectionRDD[70] at parallelize at <console>:24
    
    scala> val rdd1 = sc.parallelize(Array((1,4),(2,5),(3,6)))
    rdd1: org.apache.spark.rdd.RDD[(Int, Int)] = ParallelCollectionRDD[71] at parallelize at <console>:24
    
    scala> rdd.cogroup(rdd1).collect()
    res30: Array[(Int, (Iterable[String], Iterable[Int]))] = Array((1,(CompactBuffer(a),CompactBuffer(4))), (2,(CompactBuffer(b),CompactBuffer(5))), (3,(CompactBuffer(c),CompactBuffer(6))))
    
    scala> val rdd2 = sc.parallelize(Array((4,4),(2,5),(3,6)))
    rdd2: org.apache.spark.rdd.RDD[(Int, Int)] = ParallelCollectionRDD[74] at parallelize at <console>:24
    
    scala>  rdd.cogroup(rdd2).collect()
    res31: Array[(Int, (Iterable[String], Iterable[Int]))] = Array((4,(CompactBuffer(),CompactBuffer(4))), (1,(CompactBuffer(a),CompactBuffer())), (2,(CompactBuffer(b),CompactBuffer(5))), (3,(CompactBuffer(c),CompactBuffer(6))))
    
    scala> val rdd3 = sc.parallelize(Array((1,"a"),(1,"d"),(2,"b"),(3,"c")))
    rdd3: org.apache.spark.rdd.RDD[(Int, String)] = ParallelCollectionRDD[77] at parallelize at <console>:24
    
    scala> rdd3.cogroup(rdd2).collect()
    res32: Array[(Int, (Iterable[String], Iterable[Int]))] = Array((4,(CompactBuffer(),CompactBuffer(4))), (1,(CompactBuffer(a, d),CompactBuffer())), (2,(CompactBuffer(b),CompactBuffer(5))), (3,(CompactBuffer(c),CompactBuffer(6))))

    reduceByKey(func, [numTasks])

    在一个(K,V)的RDD上调用,返回一个(K,V)的RDD,使用指定的reduce函数,将相同key的值聚合到一起,reduce任务的个数可以通过第二个可选的参数来设置。
    scala> val rdd = sc.parallelize(List(("female",1),("male",5),("female",5),("male",2)))
    rdd: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[80] at parallelize at <console>:24
    
    scala> val reduce = rdd.reduceByKey((x,y) => x+y)
    reduce: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[81] at reduceByKey at <console>:25
    
    scala> reduce.collect()
    res33: Array[(String, Int)] = Array((female,6), (male,7))

    groupByKey

    groupByKey也是对每个key进行操作,但只生成一个sequence。
    scala> val words = Array("one", "two", "two", "three", "three", "three")
    words: Array[String] = Array(one, two, two, three, three, three)
    
    scala> val wordPairsRDD = sc.parallelize(words).map(word => (word, 1))
    wordPairsRDD: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[91] at map at <console>:26
    
    scala>  val group = wordPairsRDD.groupByKey()
    group: org.apache.spark.rdd.RDD[(String, Iterable[Int])] = ShuffledRDD[92] at groupByKey at <console>:25
    
    scala>  group.collect()
    res40: Array[(String, Iterable[Int])] = Array((two,CompactBuffer(1, 1)), (one,CompactBuffer(1)), (three,CompactBuffer(1, 1, 1)))
    
    scala> group.map(t => (t._1, t._2.sum))
    res41: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[93] at map at <console>:26
    
    scala> res41.collect()
    res42: Array[(String, Int)] = Array((two,2), (one,1), (three,3))
    
    scala> val map = group.map(t => (t._1, t._2.sum))
    map: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[94] at map at <console>:25
    
    scala> map.collect()
    res43: Array[(String, Int)] = Array((two,2), (one,1), (three,3))

    combineByKey[C]

    createCombiner: V => C,  mergeValue: (C, V) => C,  mergeCombiners: (C, C) => C) 
    对相同K,把V合并成一个集合。
    createCombiner: combineByKey() 会遍历分区中的所有元素,因此每个元素的键要么还没有遇到过,要么就 和之前的某个元素的键相同。
    如果这是一个新的元素,combineByKey() 会使用一个叫作 createCombiner() 的函数来创建 那个键对应的累加器的初始值 mergeValue: 如果这是一个在处理当前分区之前已经遇到的键, 它会使用 mergeValue() 方法将该键的累加器对应的当前值与这个新的值进行合并 mergeCombiners: 由于每个分区都是独立处理的, 因此对于同一个键可以有多个累加器。如果有两个或者更多的分区都有对应同一个键的累加器,
    就需要使用用户提供的 mergeCombiners() 方法将各个分区的结果进行合并。
    scala>  val input = sc.parallelize(scores)
    input: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[15] at parallelize at <console>:26
    
    scala>  val combine = input.combineByKey(
         |           (v)=>(v,1),
         |           (acc:(Int,Int),v)=>(acc._1+v,acc._2+1),
         |           (acc1:(Int,Int),acc2:(Int,Int))=>(acc1._1+acc2._1,acc1._2+acc2._2))
    combine: org.apache.spark.rdd.RDD[(String, (Int, Int))] = ShuffledRDD[16] at combineByKey at <console>:25
    
    scala>  val result = combine.map{
         |           case (key,value) => (key,value._1/value._2.toDouble)}
    result: org.apache.spark.rdd.RDD[(String, Double)] = MapPartitionsRDD[17] at map at <console>:25
    
    scala>  result.collect()
    res6: Array[(String, Double)] = Array((Wilma,95.33333333333333), (Fred,91.33333333333333))

    aggregateByKey

    (zeroValue:U,[partitioner: Partitioner]) (seqOp: (U, V) => U,combOp: (U, U) => U) 
    在kv对的RDD中,,按key将value进行分组合并,合并时,将每个value和初始值作为seq函数的参数,进行计算,返回的结果作为一个新的kv对,
    然后再将结果按照key进行合并,最后将每个分组的value传递给combine函数进行计算(先将前两个value进行计算,
    将返回结果和下一个value传给combine函数,以此类推),将key与计算结果作为一个新的kv对输出。 seqOp函数用于在每一个分区中用初始值逐步迭代value,combOp函数用于合并每个分区中的结果。
    scala> val rdd = sc.parallelize(List((1,3),(1,2),(1,4),(2,3),(3,6),(3,8)),3)
    rdd: org.apache.spark.rdd.RDD[(Int, Int)] = ParallelCollectionRDD[0] at parallelize at <console>:24
    
    scala> val agg = rdd.aggregateByKey(0)(math.max(_,_),_+_)
    agg: org.apache.spark.rdd.RDD[(Int, Int)] = ShuffledRDD[1] at aggregateByKey at <console>:25
    
    scala> agg.collect()
    res0: Array[(Int, Int)] = Array((3,8), (1,7), (2,3))                            
    
    scala> agg.partitions.size
    res1: Int = 3
    
    scala> val rdd = sc.parallelize(List((1,3),(1,2),(1,4),(2,3),(3,6),(3,8)),1)
    rdd: org.apache.spark.rdd.RDD[(Int, Int)] = ParallelCollectionRDD[2] at parallelize at <console>:24
    
    scala> val agg = rdd.aggregateByKey(0)(math.max(_,_),_+_).collect()
    agg: Array[(Int, Int)] = Array((1,4), (3,8), (2,3))

    foldByKey

    (zeroValue: V)(func: (V, V) => V): RDD[(K, V)] 
    aggregateByKey的简化操作,seqop和combop相同
    scala> val rdd = sc.parallelize(List((1,3),(1,2),(1,4),(2,3),(3,6),(3,8)),3)
    rdd: org.apache.spark.rdd.RDD[(Int, Int)] = ParallelCollectionRDD[4] at parallelize at <console>:24
    
    scala>  val agg = rdd.foldByKey(0)(_+_)
    agg: org.apache.spark.rdd.RDD[(Int, Int)] = ShuffledRDD[5] at foldByKey at <console>:25
    
    scala> agg.collect()
    res2: Array[(Int, Int)] = Array((3,14), (1,9), (2,3))

    sortByKey([ascending], [numTasks])

    在一个(K,V)的RDD上调用,K必须实现Ordered接口,返回一个按照key进行排序的(K,V)的RDD
    scala> val rdd = sc.parallelize(Array((3,"aa"),(6,"cc"),(2,"bb"),(1,"dd")))
    rdd: org.apache.spark.rdd.RDD[(Int, String)] = ParallelCollectionRDD[6] at parallelize at <console>:24
    
    scala>  rdd.sortByKey(true).collect()
    res3: Array[(Int, String)] = Array((1,dd), (2,bb), (3,aa), (6,cc))
    
    scala> rdd.sortByKey(false).collect()
    res4: Array[(Int, String)] = Array((6,cc), (3,aa), (2,bb), (1,dd))

    mapValues

    针对于(K,V)形式的类型只对V进行操作
    scala> val rdd3 = sc.parallelize(Array((1,"a"),(1,"d"),(2,"b"),(3,"c")))
    rdd3: org.apache.spark.rdd.RDD[(Int, String)] = ParallelCollectionRDD[13] at parallelize at <console>:24
    
    scala> rdd3.mapValues(_+"|||").collect()
    res5: Array[(Int, String)] = Array((1,a|||), (1,d|||), (2,b|||), (3,c|||))

  • 相关阅读:
    海明距离分类 JavaScript
    控制器语法糖
    中文版 ImageNet Classification with Deep Convolutional Neural Networks
    中文版 R-FCN: Object Detection via Region-based Fully Convolutional Networks
    中文版 Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
    Scrapy中scrapy.Request和response.follow的区别
    神马是回调函数?
    数据库索引原理及优化
    MYSQL数据库引擎区别详解
    数据库索引原理详解
  • 原文地址:https://www.cnblogs.com/yangy1/p/12752002.html
Copyright © 2011-2022 走看看