Unique Binary Search Trees II 题解
原创文章,拒绝转载
题目来源:https://leetcode.com/problems/unique-binary-search-trees-ii/description/
Description
Given an integer n, generate all structurally unique BST's (binary search trees) that store values 1...n.
Example
For example,
Given n = 3, your program should return all 5 unique BST's shown below.
1 3 3 2 1
/ / /
3 2 1 1 3 2
/ /
2 1 2 3
Solution
class Solution {
private:
void delTree(TreeNode *root) {
if (root == NULL)
return;
queue<TreeNode*> q;
q.push(root);
while (!q.empty()) {
TreeNode* node = q.front();
q.pop();
if (node -> left != NULL)
q.push(node -> left);
if (node -> right != NULL)
q.push(node -> right);
delete node;
}
}
TreeNode* copyTree(TreeNode* root, int offset) {
if (root == NULL)
return NULL;
TreeNode* newRoot = new TreeNode(root -> val + offset);
queue<TreeNode*> q1, q2;
q1.push(newRoot);
q2.push(root);
TreeNode *node1, *node2;
while (!q1.empty() && !q2.empty()) {
node1= q1.front();
q1.pop();
node2 = q2.front();
q2.pop();
if (node2 -> left != NULL) {
node1 -> left = new TreeNode(node2 -> left -> val + offset);
q1.push(node1 -> left);
q2.push(node2 -> left);
}
if (node2 -> right != NULL) {
node1 -> right = new TreeNode(node2 -> right -> val + offset);
q1.push(node1 -> right);
q2.push(node2 -> right);
}
}
return newRoot;
}
public:
inline void delTrees(vector<TreeNode*>& trees) {
for (int i = 0; i < trees.size(); i++) {
delTree(trees[i]);
}
trees.clear();
}
vector<TreeNode*> generateTrees(int n) {
vector<vector<TreeNode*> > results(n + 1);
if (n == 0) {
return results[0];
}
results[0].push_back(NULL);
int i, len;
for (len = 1; len <= n; len++) {
for (i = 1; i <= len; i++) {
for (auto& lchild: results[i - 1]) {
for (auto& rchild: results[len - i]) {
TreeNode* parent = new TreeNode(i);
parent -> left = copyTree(lchild, 0);
parent -> right = copyTree(rchild, i);
results[len].push_back(parent);
}
}
}
}
for (int i = 0; i < n; i++) {
delTrees(results[i]);
}
return results[n];
}
};
解题描述
这道题可以说是第一个版本的拓展,不过需要求出所有不同形态的BST的实际结构。这里考虑使用DP来解决:
- 对一定的长度的数据,其能得到的BST的类型数是固定的
- 如果是数据不同,由于数据是连续的,相同数据量的BST子树拷贝时只需要对每个节点加上数据偏移量
offset
- 从0~n,求出所有长度的数据对应的BST,每次求的时候只需要使用前面求得的BST进行子树拷贝、偏移量设置还有子树拼接,也就是DP使用的地方