zoukankan      html  css  js  c++  java
  • 纯数学教程 Page 325 例LXVIII (14) $\frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{5^2}+\cdots=\frac{3}{4}(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\cdots)$

    \begin{equation}\label{eq:fiick}
    \frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{5^2}+\cdots=\frac{3}{4}(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\cdots)
    \end{equation}


    证明:
    \begin{align*}
    \frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\cdots&=(\frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{5^2}+\cdots)+(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\cdots)\\&=(\frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{5^2}+\cdots)+\frac{1}{2^2}(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\cdots)
    \end{align*}
    因此\ref{eq:fiick}成立.

    \begin{equation}\label{eq:killed}
    \frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{9^2}+\cdots=\frac{15}{16}(1+\frac{1}{2^2}+\frac{1}{3^2}+\cdots)
    \end{equation}


    证明:
    \begin{align*}
    \frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{9^2}+\cdots&=(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\cdots)-(\frac{1}{4^2}+\frac{1}{8^2}+\frac{1}{12^2}+\cdots)\\&=(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\cdots)-\frac{1}{4^2}(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\cdots)
    \end{align*}

    因此\ref{eq:killed}成立.

  • 相关阅读:
    C#连接各种数据库的方法
    C#中MDI窗体的一些设置
    Winform子窗体刷新父窗体
    MDI窗体应用程序
    C# 窗体间传值方法大汇总
    mdi父窗体如何向子窗体发送数据
    DataGridView 清空原数据
    js call回调的this指向问题
    sass进阶 @if @else if @else @for循环
    sass的加减乘除
  • 原文地址:https://www.cnblogs.com/yeluqing/p/3828171.html
Copyright © 2011-2022 走看看