zoukankan      html  css  js  c++  java
  • POJ 3723 Conscription

    Conscription
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 10477   Accepted: 3693

    Description

    Windy has a country, and he wants to build an army to protect his country. He has picked up N girls and M boys and wants to collect them to be his soldiers. To collect a soldier without any privilege, he must pay 10000 RMB. There are some relationships between girls and boys and Windy can use these relationships to reduce his cost. If girl x and boy y have a relationship d and one of them has been collected, Windy can collect the other one with 10000-d RMB. Now given all the relationships between girls and boys, your assignment is to find the least amount of money Windy has to pay. Notice that only one relationship can be used when collecting one soldier.

    Input

    The first line of input is the number of test case.
    The first line of each test case contains three integers, NM and R.
    Then R lines followed, each contains three integers xiyi and di.
    There is a blank line before each test case.

    1 ≤ NM ≤ 10000
    0 ≤ R ≤ 50,000
    0 ≤ xi < N
    0 ≤ yi < M
    0 < di < 10000

    Output

    For each test case output the answer in a single line.

    Sample Input

    2
    
    5 5 8
    4 3 6831
    1 3 4583
    0 0 6592
    0 1 3063
    3 3 4975
    1 3 2049
    4 2 2104
    2 2 781
    
    5 5 10
    2 4 9820
    3 2 6236
    3 1 8864
    2 4 8326
    2 0 5156
    2 0 1463
    4 1 2439
    0 4 4373
    3 4 8889
    2 4 3133
    

    Sample Output

    71071
    54223
    


    题意:须要征募女兵N人,男兵M人。每征募一个人须要花费10000美元,可是假设已经征募的人中有一些关系亲热的人,那么能够少花一些钱。给出若干男女之间亲热关系,征募某个人的费用是10000 - (已经征募的人中和自己亲热度的最大值)。

    要求通过适当的征募顺序使得征募全部人所需费用最小。

    思路:

    把人看做顶点。关系看做边,这个问题就转化为求解无向图中的最大权森林问题。

    最大权森林问题能够通过把全部边权取反之后用最小生成树的算法求解。

    #include <cstdio>
    #include <algorithm>
    using namespace std;
    const int maxn = 50000 + 10;
    
    struct edge
    {
        int u, v, cost;
       /* edge(int u, int v, int cost){
            this -> u = u;
            this -> v = v;
            this -> cost = cost;
        }*/
    };
    
    bool comp(const edge& e1, const edge& e2)
    {
        return e1.cost < e2.cost;
    }
    edge es[maxn];
    int N, M, R;
    int x[maxn], y[maxn], d[maxn];
    int V, E;
    int par[maxn];
    
    void init(int n)
    {
        for (int i = 0; i < n; i++){
            par[i] = i;
        }
    }
    
    int find(int a)
    {
        if (par[a] == a)
            return a;
        else
            return par[a] = find(par[a]);
    }
    
    void unite(int a, int b)
    {
        a = find(a);
        b = find(b);
        if (a != b)
            par[a] = b;
    }
    
    bool same(int a, int b)
    {
        return find(a) == find(b);
    }
    
    int kruskal()
    {
        sort(es, es + E, comp);
        init(V);
        int res = 0;
        for (int i = 0; i < E; i++){
            edge e = es[i];
            if (!same(e.u, e.v)){
                unite(e.u, e.v);
                res += e.cost;
            }
        }
        return res;
    }
    void solve()
    {
        V = N + M;
        E = R;
        for (int i = 0; i < R; i++){
            es[i] = (edge){x[i], N + y[i], -d[i]};
        }
        printf("%d
    ", 10000 * (N + M) + kruskal());
    }
    int main()
    {
        int t;
        scanf("%d", &t);
        while (t--){
            scanf("%d%d%d", &N, &M, &R);
            for (int i = 0; i < R; i++){
                scanf("%d%d%d", &x[i], &y[i], &d[i]);
            }
            solve();
        }
        return 0;
    }
    

  • 相关阅读:
    util包的常用类及其方法(下)
    util包的常用类及其方法(上)
    每日一记--java基础01
    每日一记--java细节之问01
    每日一记--设计模式01
    每日一记--JVM虚拟机01
    每日一记--java基础之final/static/事务
    每日一记--Mysql错误代码1067
    每日一记--AOP
    每日一记--代理模式
  • 原文地址:https://www.cnblogs.com/yfceshi/p/7220288.html
Copyright © 2011-2022 走看看