zoukankan      html  css  js  c++  java
  • 浅浅地聊一下矩阵与线性映射及矩阵的特征值与特征向量

    都说矩阵其实就是线性映射,你明白不?反正一开始我是不明白的;

    线性映射用矩阵表示:(很好明白的)

    有两个线性空间,分别为V1与V2, V1的一组基表示为clip_image002,V2的一组基表示为clip_image002[4];(注意哦,维度可以不一样啊,反正就是线性空间啊),

    1, 现在呢,有一个从V1到V2的映射F, 它可以把V1中的一组基都映射到线性空间V2中去,所以有:

    clip_image002[6]                      

    用矩阵可以表示为:

    clip_image002[8]

    2,现在我们把在V1中有一个向量A,经过映射F变为了向量B,用公式表示为:

    clip_image002[38]                                clip_image002[12] 

    clip_image002[16]

    所以呢,坐标的映射表示为:clip_image002[18]

    由上面的过程,我们看到了:可以把一个映射F用矩阵clip_image002[20] 表示;

    由空间X映射到空间Y时,向量的坐标转换表示为:clip_image002[18]

    所以呢,我们可以把矩阵看作是线性变换或线性映射;

    (补充一下什么是线性映射?满足下面两个条件:clip_image002[23]   )

    矩阵的特征值与特征向量:

    应该说是线性映射的特征值与特征向量,因为映射可以用矩阵表示,所以也可以说是矩阵的特征值与特征向量,当线性映射所在的表示为(100;010;001)的形式时,它们的特征值也特征向量相同;

    1,用线性映射表示:

    在空间V中的一个线性映射F,若在空间V的存在一个向量clip_image002[25],满足下面:

    clip_image002[27]      则向量clip_image002[25]称为映射的特征向量,clip_image002[30]为映射的特征值;

    2,用矩阵表示:

    把上面的公式改改,把矩阵A表示映射,用坐标 clip_image002[32] 来表示向量clip_image002[25],可以得到:

    clip_image002[41]

    clip_image002[43]

    因为向量clip_image002[25]映射后结果为clip_image002[46],所以,映射前后的线性空间是没有变化的,所以映射前后可以用同一组基clip_image002[48]表示,所以有:

    clip_image002[50]

    最后得到:

    clip_image002[36]

    特征值与特征向量的几个定理 :

    1.image

    2. image

    3. image

    4. image

    需要强调地是:对于一个N重根的特征值,它的特征向量的基础解系的个数是小于或等于N的,即上面说的几何重复度小于或等于代数重复度; 对于不是重根的特征值,只能对应一个特征向量的基础解系;(基础解系就是特征向量组成的线性空间的基啊);

    举两个例子:  

    clip_image002[1]                clip_image004

    上面两个矩阵中,左边的矩阵的特征值为二重根1,它的特向量的基础解系只有一个:(1,0);   右边矩阵的特征值为二重根1,它的特征向量的基础解系有两个:(1,0)和(0,1);

    clip_image002[3]            clip_image004[4]

    上面的矩阵中,左边的矩阵的特征值为1和2,特征值1对应的特征向量的基础解系为(1,0,0);      特征值2对应的特征向量的基础解系只有一个:(1,1,0);

                     右边的矩阵的特征值为1和2, 特征值1对应的特征向量的基础解系为(1,0,0);      特征值2对应的特征向量的基础解系有两个,分别为:(1,0,1)和(0,1,-1);

    (说明:在重跟的情况下,选择的基础解系不是唯一的,不同的基础解系是可以互相表示的, 在不同基础解系下表示的线性空间是唯一的;)

     

     

    看看特征向量到底是什么?

    对于一个映射,特征向量才是本质有用的,特征值的作用不大。一个特征值对应了一个特征向量族(因为可以乘以一个系数,可以它的个数是无穷的),而一个特征向量只能对应一个特征值;

    在一个映射中,不同的特征值对应的特征向量组成的线性空间中的向量的方向(负也表示不变)不会发生变化,只是scale变了,缩放倍数即为特征值;

    例如:对于不是非重根的特征值的特征向量只有一个,它组成的线性空间是一维的,在映射过程中,在它上面的向量的方向不变; 对于多个重根的特征值的特征向量可以有多个,所以它们组成的线性空间是多维的,在这个线性空间中的向量在映射过程中的方向也是不变的;

  • 相关阅读:
    浙大PAT CCCC L3-001 凑零钱 ( 0/1背包 && 路径记录 )
    二分图匹配
    Codeforces 939E Maximize ( 三分 || 二分 )
    冲刺第二周第七天
    冲刺第二周第六天
    冲刺第二周第五天
    构建之法阅读笔记04
    冲刺第二周第四天
    构建之法阅读笔记03
    构建之法阅读笔记02
  • 原文地址:https://www.cnblogs.com/yinheyi/p/7242495.html
Copyright © 2011-2022 走看看