zoukankan      html  css  js  c++  java
  • 实验二 K-近邻算法及应用

    一、作业信息

    博客班级 机器学习实验-计算机18级
    作业要求 实验二
    学号 3180701232

    二、实验目的

    1.理解K-近邻算法原理,能实现算法K近邻算法;

    2.掌握常见的距离度量方法;

    3.掌握K近邻树实现算法;

    4.针对特定应用场景及数据,能应用K近邻解决实际问题。

    三、实验内容

    1.实现曼哈顿距离、欧氏距离、闵式距离算法,并测试算法正确性。

    2.实现K近邻树算法;

    3.针对iris数据集,应用sklearn的K近邻算法进行类别预测。

    4.针对iris数据集,编制程序使用K近邻树进行类别预测。

    四、实验过程及结果
    1

    import math
    #导入数学运算函数
    from itertools import combinations
    In [2]:
    

    2

    #计算欧式距离
    def L(x,y,p=2):
       # x1 = [1, 1], x2 = [5,1]  在这里,实例是两个二维特征 x1 = [1, 1], x2 = [5,1]
        if len(x)==len(y) and len(x)>1:
    # 当两个特征的维数相等时,并且维度大于1时。
            sum=0 # 目前总的损失函数值为0
            for i in range(len(x)):
                sum+=math.pow(abs(x[i] - y[i]), p)
                # math.pow( x, y )函数是计算x的y次方。
                return math.pow(sum,1/p)# 距离公式。
            else:
                return 0
    

    3

    # 输入样例,该列来源于课本
    x1 = [1, 1]
    x2 = [5, 1]
    x3 = [4, 4]
    

    4

    # 计算x1与x2和x3之间的距离
    for i in range(1,5):# i从1到4
        r={ '1-{}'.format(c):L(x1, c, p=i) for c in [x2, x3]}
        print(min(zip(r.values(), r.keys())))# 当p=i时选出x2和我x3中距离x1最近的点
    

    (3.0, '1-[4, 4]')
    (3.0, '1-[4, 4]')
    (3.0, '1-[4, 4]')
    (3.0, '1-[4, 4]')

    5

    # 导包
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    %matplotlib inline
    from sklearn.datasets import load_iris
    from sklearn.model_selection import train_test_split
    from collections import Counter
    

    6

    # data
    iris = load_iris()# 获取python中鸢尾花Iris数据集
    df = pd.DataFrame(iris.data, columns=iris.feature_names)# 将数据集使用DataFrame建表
    df['label'] = iris.target# 将表的最后一列作为目标列
    df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
    # data = np.array(df.iloc[:100, [0, 1, -1]])
    

    7

    df# 将建好的表显示在屏幕上查看
    


    8

    #数据进行可视化
    #将标签为0、1的两种花,根据特征为长度和宽度打点表示
    plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0')
    plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')
    plt.xlabel('sepal length')
    plt.ylabel('sepal width')
    plt.legend()
    

    9

    #取数据,并且分成训练和测试集合
    data = np.array(df.iloc[:100, [0, 1, -1]])
    #按行索引,取出第0列第1列和最后一列,即取出sepal长度、宽度和标签
    X, y = data[:,:-1], data[:,-1]#X为sepal length,sepal width y为标签 
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
    # train_test_split函数用于将矩阵随机划分为训练子集和测试子集
    

    10

    class KNN:
        def __init__(self, X_train, y_train, n_neighbors=3, p=2):
            """
            parameter: n_neighbors 临近点个数
            parameter: p 距离度量
            """
            self.n = n_neighbors#临*点个数
            self.p = p#距离度量
            self.X_train = X_train
            self.y_train = y_train
        def predict(self, X):
            # 取出n个点,放入空的列表,列表中存放预测点与训练集点的距离及其对应标签
            # 取距离最小的k个点:先取前k个,然后遍历替换
            # knn_list存“距离”和“label”
            knn_list = []
            for i in range(self.n):
                #np.linalg.norm 求范数
                dist = np.linalg.norm(X - self.X_train[i], ord=self.p)
                knn_list.append((dist, self.y_train[i]))
            #再取出训练集剩下的点,然后与n_neighbor个点比较大叫,将距离大的点更新
            #保证knn_list列表中的点是距离最小的点
            for i in range(self.n, len(self.X_train)):
                max_index = knn_list.index(max(knn_list, key=lambda x: x[0]))
                dist = np.linalg.norm(X - self.X_train[i], ord=self.p)
                if knn_list[max_index][0] > dist:
                    knn_list[max_index] = (dist, self.y_train[i])
            # 统计
            # 统计分类最多的点,确定预测数据的分类
            knn = [k[-1] for k in knn_list]
            #counter为计数器,按照标签计数
            count_pairs = Counter(knn)
            #排序
            max_count = sorted(count_pairs, key=lambda x:x)[-1]
            return max_count
    
        #预测的正确率    
        def score(self, X_test, y_test):
            right_count = 0
            n = 10
            for X, y in zip(X_test, y_test):
                label = self.predict(X)
                if label == y:
                    right_count += 1
            return right_count / len(X_test)
    

    11

    clf = KNN(X_train, y_train)# 调用KNN算法进行计算
    

    12

    clf.score(X_test, y_test)# 计算正确率
    

    1.0
    13

    #预测点
    test_point = [6.0, 3.0]
    #预测结果
    print('Test Point: {}'.format(clf.predict(test_point)))
    

    Test Point: 1.0

    14

    plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0')
    plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')
    #打印预测点
    plt.plot(test_point[0], test_point[1], 'bo', label='test_point')
    plt.xlabel('sepal length')
    plt.ylabel('sepal width')
    plt.legend()
    

    15

    from sklearn.neighbors import KNeighborsClassifier
    

    16

    clf_sk = KNeighborsClassifier()
    clf_sk.fit(X_train, y_train)
    

    KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
    metric_params=None, n_jobs=1, n_neighbors=5, p=2,
    weights='uniform')

    17

    clf_sk.score(X_test, y_test)
    

    1.0

    18

    # kd-tree每个结点中主要包含的数据结构如下
    class KdNode(object):
        def __init__(self, dom_elt, split, left, right):
            self.dom_elt = dom_elt # k维向量节点(k维空间中的一个样本点)
            self.split = split # 整数(进行分割维度的序号)
            self.left = left # 该结点分割超平面左子空间构成的kd-tree
            self.right = right # 该结点分割超平面右子空间构成的kd-tree
            
    class KdTree(object):
        def __init__(self, data):
            k = len(data[0]) # 数据维度
            
    def CreateNode(split, data_set): # 按第split维划分数据集exset创建KdNode
            if not data_set: # 数据集为空
                return None
            # key参数的值为一个函数,此函数只有一个参数且返回一个值用来进行比较
            # operator模块提供的itemgetter函数用于获取对象的哪些维的数据,参数为需要获取的数据在对象
            #data_set.sort(key=itemgetter(split)) # 按要进行分割的那一维数据排序
            data_set.sort(key=lambda x: x[split])
            split_pos = len(data_set) // 2 # //为Python中的整数除法
            median = data_set[split_pos] # 中位数分割点
            split_next = (split + 1) % k # cycle coordinates
            
            # 递归的创建kd树
            return KdNode(median, split,
                CreateNode(split_next, data_set[:split_pos]), # 创建左子树
                CreateNode(split_next, data_set[split_pos + 1:])) # 创建右子树
        
            self.root = CreateNode(0, data) # 从第0维分量开始构建kd树,返回根节点
        
    # KDTree的前序遍历
    def preorder(root):
        print (root.dom_elt)
        if root.left: # 节点不为空
            preorder(root.left)
        if root.right:
            preorder(root.right)
    

    19

    # 对构建好的kd树进行搜索,寻找与目标点最近的样本点:
    from math import sqrt
    from collections import namedtuple
    
    # 定义一个namedtuple,分别存放最近坐标点、最近距离和访问过的节点数
    result = namedtuple("Result_tuple", "nearest_point nearest_dist nodes_visited")
    
    def find_nearest(tree, point):
        k = len(point) # 数据维度
        def travel(kd_node, target, max_dist):
            if kd_node is None:
                return result([0] * k, float("inf"), 0) # python中用float("inf")和float("-inf")表示正负
    
            nodes_visited = 1
        
            s = kd_node.split # 进行分割的维度
            pivot = kd_node.dom_elt # 进行分割的“轴”
        
            if target[s] <= pivot[s]: # 如果目标点第s维小于分割轴的对应值(目标离左子树更近)
                nearer_node = kd_node.left # 下一个访问节点为左子树根节点
                further_node = kd_node.right # 同时记录下右子树
            else: # 目标离右子树更近
                nearer_node = kd_node.right # 下一个访问节点为右子树根节点
                further_node = kd_node.left# 同时记录下右子树
            
            temp1 = travel(nearer_node, target, max_dist) # 进行遍历找到包含目标点的区域
    
            nearest = temp1.nearest_point # 以此叶结点作为“当前最近点”
            dist = temp1.nearest_dist # 更新最近距离
    
            nodes_visited += temp1.nodes_visited
    
            if dist < max_dist:
                max_dist = dist # 最近点将在以目标点为球心,max_dist为半径的超球体内
    
            temp_dist = abs(pivot[s] - target[s]) # 第s维上目标点与分割超平面的距离
            if max_dist < temp_dist: # 判断超球体是否与超平面相交
                return result(nearest, dist, nodes_visited) # 不相交则可以直接返回,不用继续判断
        
            #----------------------------------------------------------------------
            # 计算目标点与分割点的欧氏距离
            temp_dist = sqrt(sum((p1 - p2) ** 2 for p1, p2 in zip(pivot, target)))
    
            if temp_dist < dist: # 如果“更近”
                nearest = pivot # 更新最近点
                dist = temp_dist # 更新最近距离
                max_dist = dist # 更新超球体半径
            
            # 检查另一个子结点对应的区域是否有更近的点
            temp2 = travel(further_node, target, max_dist)
    
            nodes_visited += temp2.nodes_visited
            if temp2.nearest_dist < dist: # 如果另一个子结点内存在更近距离
                nearest = temp2.nearest_point # 更新最近点
                dist = temp2.nearest_dist # 更新最近距离
    
            return result(nearest, dist, nodes_visited)
        
        return travel(tree.root, point, float("inf")) # 从根节点开始递归
    

    20

    data = [[2,3],[5,4],[9,6],[4,7],[8,1],[7,2]]
    kd = KdTree(data)
    preorder(kd.root)
    

    [7, 2]
    [5, 4]
    [2, 3]
    [4, 7]
    [9, 6]
    [8, 1]

    21

    
    from time import clock
    from random import random
    
    # 产生一个k维随机向量,每维分量值在0~1之间
    def random_point(k):
        return [random() for _ in range(k)]
    
    # 产生n个k维随机向量
    def random_points(k, n):
        return [random_point(k) for _ in range(n)]
    

    22

    ret = find_nearest(kd, [3,4.5])
    print (ret)
    

    Result_tuple(nearest_point=[2, 3], nearest_dist=1.8027756377319946, nodes_visited=4)

    23

    N = 400000
    t0 = clock()
    kd2 = KdTree(random_points(3, N)) # 构建包含四十万个3维空间样本点的kd树
    ret2 = find_nearest(kd2, [0.1,0.5,0.8]) # 四十万个样本点中寻找离目标最近的点
    t1 = clock()
    print ("time: ",t1-t0, "s")
    print (ret2)
    

    7.299844505209247 s
    Result_tuple(nearest_point=[0.10505669630674175, 0.49542598718931097, 0.803316691954
    3026], nearest_dist=0.007582362181450973, nodes_visited=53)

    五、实验小结
    通过本次实验,我理解了K-近邻算法原理,能实现算法K近邻算法,也掌握了常见的距离度量方法和K近邻树实现算法,并学会了针对特定应用场景及数据,能应用K近邻解决实际问题。

  • 相关阅读:
    临时表学习
    再读《黄金时代》
    shell脚本获取给定年月前一月份及后一月份
    MEMORY_TARGET not supported on this system
    2013年的总结
    windows live writer试试
    入园第一篇
    工作中经常用到的几个字符串和数组操作方法
    小程序获取用户信息失败
    前端性能优化方法概括
  • 原文地址:https://www.cnblogs.com/yj-1/p/14786085.html
Copyright © 2011-2022 走看看