zoukankan      html  css  js  c++  java
  • 71.Edit Distance(编辑距离)

    Level:

      Hard

    题目描述:

    Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.

    You have the following 3 operations permitted on a word:

    1. Insert a character
    2. Delete a character
    3. Replace a character

    Example 1:

    Input: word1 = "horse", word2 = "ros"
    Output: 3
    Explanation: 
    horse -> rorse (replace 'h' with 'r')
    rorse -> rose (remove 'r')
    rose -> ros (remove 'e')
    

    Example 2:

    Input: word1 = "intention", word2 = "execution"
    Output: 5
    Explanation: 
    intention -> inention (remove 't')
    inention -> enention (replace 'i' with 'e')
    enention -> exention (replace 'n' with 'x')
    exention -> exection (replace 'n' with 'c')
    exection -> execution (insert 'u')
    

    思路分析:

      动态规划的思想,dp[i] [j]代表将word1前i个字符转换成word2前j个字符所需要的操作次数。

      如果word1[i]==word2[j],那么dp[i] [j]=dp[i-1] [j-1]。

      如果word1[i]不等于word2[j],需要找出插入元素,删除元素,替换元素中最小的操作,然后加一。

      dp[i] [j-1]表示word1前i个可以表示word2前j-1个,那么要表示前j个,只能执行插入操作。

      dp[i-1] [j]表示word1前i-1个可以表示word2前j个,那么要前i个表示前j个,只能执行删除操作。

      dp[i-1] [j-1]表示word1前i-1个可以表示word2前j-1个,那么要前i个表示前j个,只能执行替换操作。

      则dp[i] [j]=min(dp[i-1] [j],dp[i] [j],dp[i-1] [j-1])+1;

    代码:

    public class Solution{
        public int minDistance(String word1,String word2){
            int m=word1.length();
            int n=word2.length();
            int [][]dp=new int [m+1][n+1];
            for(int i=0;i<=m;i++){
                dp[i][0]=i; //单纯的删除操作
            }
            for(int i=0;i<=n;i++){
                dp[0][i]=i; //单纯的插入操作
            }
            for(int i=0;i<m;i++){
                for(int j=0;j<n;j++){
                    if(word1.charAt(i)==word2.charAt(j)){
                        dp[i+1][j+1]=dp[i][j];
                    }else{
                        dp[i+1][j+1]=Math.min(dp[i+1][j],Math.min(dp[i][j+1],dp[i][j]))+1;
                    }
                }
            }
            return dp[m][n];
        }
    }
    
  • 相关阅读:
    11-8 Eureka Server整合SpringSecurity解决安全问题
    11-7 Eureka Server安全问题介绍
    11-6 CORS跨域资源共享解决
    11-5 JWT验证演示
    11-4 JWT验证开发演示
    11-3 JWT颁发流程讲解
    11-2 JWT介绍
    11-1 服务安全章节介绍
    10-15 Zuul知识点梳理
    10-14 Zuul与Meetingfilm整合
  • 原文地址:https://www.cnblogs.com/yjxyy/p/11098060.html
Copyright © 2011-2022 走看看