zoukankan      html  css  js  c++  java
  • hdu 1159 Common Subsequence(LCS)

    Common Subsequence

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 37725    Accepted Submission(s): 17301


    Problem Description
    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.
    The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.
     
    Sample Input
    abcfbc abfcab
    programming contest
    abcd mnp
     
    Sample Output
    4
    2
    0
     
    题目大意:
         输入两个字符串,输出这两个字符串的最长公共子序列长度。
    解题思路:
         最长公共子序列模板题,算法详解:http://www.cnblogs.com/yoke/p/6686898.html
     
     
     1 #include <stdio.h>
     2 #include <string.h>
     3 
     4 char s1[1000],s2[1000];
     5 int x[1000][1000];   // 记录最长公共子序列 
     6 int LCS()    
     7 {
     8     int i,j;
     9     int l1 = strlen(s1);     // 计算字符串的长度 
    10     int l2 = strlen(s2);
    11     memset(x,0,sizeof(x));  // 初始化 过滤掉0的情况 
    12     
    13     for (i = 1; i <= l1; i ++)
    14     {
    15         for (j = 1; j <= l2; j ++)
    16         {
    17             if (s1[i-1] == s2[j-1])   // 相等的情况 
    18                // 字符数组是从0开始的 所以这里要减 1 
    19                 x[i][j] = x[i-1][j-1]+1;
    20             else if(x[i-1][j] >= x[i][j-1])    // 不相等的时候选择 比较“左边”和“上边”选择较大的 
    21                 x[i][j] = x[i-1][j];
    22             else
    23                 x[i][j] = x[i][j-1];
    24         }
    25     }
    26     return x[l1][l2];
    27 }
    28 int main ()
    29 {
    30     while (scanf("%s%s",s1,s2)!=EOF)
    31     {
    32         int len = LCS();
    33         printf("%d
    ",len); 
    34     }
    35     return 0;
    36 }
  • 相关阅读:
    mysql字符集设置
    mysql解压版服务启动方式
    html的表格边框为什么会这么粗?
    通过js获取tinymce4.x的值
    bzoj 3083 树链剖分
    bzoj 1143 二分图最大独立集
    bzoj 2303 并查集
    可持久化数据结构讲解
    bzoj 1072 状压DP
    bzoj 2741 可持久化trie
  • 原文地址:https://www.cnblogs.com/yoke/p/6686965.html
Copyright © 2011-2022 走看看