zoukankan      html  css  js  c++  java
  • 【2011 Greater New York Regional 】Problem I :The Golden Ceiling

    一道比较简单但是繁琐的三维计算几何,找错误找的我好心酸,没想到就把一个变量给写错了 = =;

    题目的意思是求平面切长方体的截面面积+正方体顶部所遮盖的面积;

    找出所有的切点,然后二维凸包一下直接算面积即可!

    发个代码纪念一下!

    代码:

      1 #include<cstdio>
      2 #include<cmath>
      3 #include<algorithm>
      4 #include<cstring>
      5 #define eps 1e-8
      6 using namespace std;
      7 
      8 inline int sig(double x){return (x>eps)-(x<-eps);}
      9 double w,l,hh,aa,bb,cc,dd;
     10 int num1,num2;
     11 struct point
     12 {
     13     double x,y,z;
     14     point(double x=0,double y=0,double z=0):x(x),y(y),z(z) { }
     15     bool operator < (const point &t)const
     16     {
     17         if(sig(x-t.x)==0)
     18         {
     19             return y<t.y;
     20         }
     21         else return x<t.x;
     22     }
     23     point operator+(const point&b)const{return point(x+b.x,y+b.y,z+b.z);}
     24     point operator-(const point&b)const{return point(x-b.x,y-b.y,z-b.z);}
     25     point operator*(double p){return point(x*p,y*p,z*p);}
     26     point operator/(double p){return point(x/p,y/p,z/p);}
     27 } ve[12],tu[6],vv[12],tt[6];
     28 
     29 void intersection(point a,point b)
     30 {
     31     double t=(aa*a.x+bb*a.y+cc*a.z+dd)/(aa*(a.x-b.x)+bb*(a.y-b.y)+cc*(a.z-b.z));
     32     if(t>=-eps&&t<=1.00000+eps)
     33     {
     34         point v=a+(b-a)*t;
     35         ve[num1++]=v;
     36         if(sig(v.z-hh)==0)
     37             tu[num2++]=v;
     38     }
     39 }
     40 double lenth(point a){return sqrt(a.x*a.x+a.y*a.y+a.z*a.z);}
     41 point cross(point a,point b){return point(a.y*b.z-a.z*b.y,a.z*b.x-a.x*b.z,a.x*b.y-a.y*b.x);}
     42 double area(point a,point b,point c){return lenth(cross(b-a,c-a))/2.0;}
     43 double cross2(point a,point b){return a.x*b.y-a.y*b.x;}
     44 bool check(point a)
     45 {
     46     if(sig(aa*a.x+bb*a.y+cc*a.z+dd)<0)
     47         return 1;
     48     return 0;
     49 }
     50 
     51 int convexhull(point *p,int n,point* ch)
     52 {
     53     sort(p,p+n);
     54     int m=0;
     55     for(int i=0;i<n;i++)
     56     {
     57         while(m>1&&cross2(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=eps)m--;
     58         ch[m++]=p[i];
     59     }
     60     int k=m;
     61     for(int i=n-2;i>=0;i--)
     62     {
     63         while(m>k&&cross2(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=eps)m--;
     64         ch[m++]=p[i];
     65     }
     66     if(n>1)m--;
     67     return m;
     68 }
     69 
     70 int main()
     71 {
     72     int t,ca;
     73     scanf("%d",&t);
     74     while(t--)
     75     {
     76         memset(tu,0,sizeof tu);
     77         memset(ve,0,sizeof ve);
     78         memset(vv,0,sizeof vv);
     79         memset(tt,0,sizeof tt);
     80         scanf("%d",&ca);
     81         printf("%d ",ca);
     82         scanf("%lf%lf%lf%lf%lf%lf%lf",&l,&w,&hh,&aa,&bb,&cc,&dd);
     83         num1=num2=0;
     84         dd=-dd;
     85         point a(0.0,0.0,0.0);
     86         point b(l,0.0,0.0);
     87         point c(l,w,0.0);
     88         point d(0.0,w,0.0);
     89         point e(0.0,0.0,hh);
     90         point f(l,0.0,hh);
     91         point g(l,w,hh);
     92         point h(0.0,w,hh);
     93         intersection(a,b);
     94         intersection(b,c);
     95         intersection(c,d);
     96         intersection(d,a);
     97         intersection(a,e);
     98         intersection(b,f);
     99         intersection(c,g);
    100         intersection(d,h);
    101         intersection(e,f);
    102         intersection(f,g);
    103         intersection(g,h);
    104         intersection(h,e);
    105         if(check(e)==1)tu[num2++]=e;
    106         if(check(f)==1)tu[num2++]=f;
    107         if(check(g)==1)tu[num2++]=g;
    108         if(check(h)==1)tu[num2++]=h;
    109         int x=convexhull(ve,num1,vv);
    110         int y=convexhull(tu,num2,tt);
    111         double ans=0;
    112         for(int i=2;i<x;i++)
    113             ans+=area(vv[0],vv[i-1],vv[i]);
    114         for(int i=2;i<y;i++)
    115             ans+=area(tt[0],tt[i-1],tt[i]);
    116         printf("%.0lf
    ",ceil(ans));
    117     }
    118     return 0;
    119 }
    View Code
  • 相关阅读:
    编译安装linux内核步骤
    怎样在github上协同开发
    在JSP里使用CKEditor和CKFinder
    tomcat结合nginx使用小结
    JAVA学习笔记——(五)
    JAVA学习笔记——(四)
    JAVA学习笔记——(三)
    JAVA学习笔记——(二)
    JAVA学习笔记——(一)
    ansible
  • 原文地址:https://www.cnblogs.com/yours1103/p/3349157.html
Copyright © 2011-2022 走看看