zoukankan      html  css  js  c++  java
  • LGOJ2257 YY的GCD

    这题美好体验就是卡常

    Description

    link

    [sum^{n}_ {i=1} sum^m_{j=1} [gcd(i,j)in prime] ]

    其中:(1leq n,m leq 10^7),多组询问

    Solution

    对于这种与(gcd)相关的反演题,有一个好的套路

    (f(d)=[gcd(i,j)=d]),(F(n))(gcd(i,j)=d)(d)的倍数的个数,即:

    [f(d)=[gcd(i,j)=d] ]

    [F(n)=sum_{d|n} f(d)= lfloor frac{N}{n} floor lfloor frac{M}{m} floor ]

    [f(n)=sum_{n|d} mu(lfloor frac{d}{n} floor)F(d) ]

    由着这个套路,我们开始化简这个式子

    [sum_{p in prime} sum_{i=1}^n sum_{j=1}^m [gcd(i,j)==p] ]

    (f(p))带入:

    [sum_{p in prime}f(p) ]

    (f(x))换成(F(x))

    [sum_{p in prime}sum_{p|d} mu(lfloor frac{d}{p} floor)F(d) ]

    我们枚举(lfloor frac{d}{p} floor)

    [sum_{p in prime} sum_{d=1}^{min(lfloor frac{n}{p} floor,lfloor frac{m}{p} floor} mu(d)F(dp) ]

    再把(F(dp))换成最终式:

    [sum_{p in prime} sum_{d=1}^{min(lfloor frac{n}{p} floor,lfloor frac{m}{p} floor)} mu(d)lfloor frac{N}{n} floor lfloor frac{M}{m} floor ]

    (T=dp),则有:

    [sum^{min(n,m)}_ {T=1} sum_{t|T,tin prime} mu(lfloor frac{T}{t} floor)lfloor frac{n}{T} floorlfloor frac{m}{T} floor ]

    [sum^{min(n,m)}_ {T=1} lfloor frac{n}{T} floorlfloor frac{m}{T} floor(sum_{t|T} mu(lfloor frac{T}{t} floor)) ]

    推到这里,我们就都可以做了

    (mu(space))可以线性筛,其他的可以整除分块

    CODE

    #include<bits/stdc++.h>
    #define reg register
    using namespace std;
    namespace yspm{
    	inline int read()
    	{
    		int res=0,f=1; char k;
    		while(!isdigit(k=getchar())) if(k=='-') f=-1;
    		while(isdigit(k)) res=res*10+k-'0',k=getchar();
    		return res*f;
    	}
    	const int N=10000010;
    	bool vis[N]; int pri[N],mu[N],g[N],cnt;
    	#define ll long long
    	ll sum[N];
    	inline void prework()
    	{
    		mu[1]=1; 
    		for(reg int i=2;i<N;++i)
    		{
    			if(!vis[i]){mu[i]=-1;pri[++cnt]=i;}
    			for(reg int j=1;j<=cnt&&pri[j]*i<N;++j)
    			{
    				vis[i*pri[j]]=1;
    				if(i%pri[j]==0) break;
    				else mu[pri[j]*i]-=mu[i];
    			}
    		}
    		for(reg int j=1;j<=cnt;++j)
    		{
    			for(reg int i=1;i*pri[j]<N;++i) g[i*pri[j]]+=mu[i];
    		}
    		for(reg int i=1;i<N;++i) sum[i]=sum[i-1]+(ll)g[i];
    		return ;
    	}
    	inline void work()
    	{
    		int n=read(),m=read(); if(n>m) swap(n,m);
    		ll ans=0;
    		 for(reg int l=1,r;l<=n;l=r+1)
    		 {
    		 	r=min(n/(n/l),m/(m/l));
    		 	ans+=1ll*(n/l)*(m/l)*(sum[r]-sum[l-1]); 
    		 }printf("%lld
    ",ans);
    		return ;
    	}
    	signed main()
    	{
    		prework(); int T=read(); while(T--) work();
    		return 0;
    	}
    }
    signed main(){return yspm::main();}
    
  • 相关阅读:
    Java面向对象_常用类库api——二分查找算法
    Spyder中代码提示功能添加
    随机数种子random.seed()理解
    Windows10下Anaconda+Tensorflow+Keras环境配置
    面向对象分析与设计—OOD部分
    面向对象分析与设计—OOA部分
    面向对象分析与设计—基本概念部分
    基于聚类K-Means方法实现图像分割
    机器学习中强化学习与监督学习、无监督学习区别
    LeetCode501.二叉搜索树中的众数
  • 原文地址:https://www.cnblogs.com/yspm/p/12266598.html
Copyright © 2011-2022 走看看