分析
我们让s到1,关键点到t分别连流量为inf的边
于是我们可以考虑跑s到t的最小割
于是我们将所有点拆为两个点,关键点和1的两个点之间连inf,其余点连1
将原图的边也连上,流量为inf
于是跑最小割即可
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<ctime>
#include<queue>
#include<vector>
#include<set>
#include<map>
#include<stack>
using namespace std;
const int dx[] = {1,-1,0,0};
const int dy[] = {0,0,1,-1};
const int inf = 1e9+7;
int n,m,s,t,head[2000100],to[2000100],nxt[2000100],w[2000100],ano[2000100],cnt,level[2000100],cur[2000100];
int used[2000100];
inline void add(int x,int y,int z){
nxt[++cnt]=head[x];
head[x]=cnt;
to[cnt]=y;
w[cnt]=z;
ano[cnt]=cnt+1;
nxt[++cnt]=head[y];
head[y]=cnt;
to[cnt]=x;
w[cnt]=0;
ano[cnt]=cnt-1;
}
inline bool bfs(){
memset(level,-1,sizeof(level));
queue<int>q;
level[s]=0;
q.push(s);
while(!q.empty()){
int x=q.front();
q.pop();
for(int i=head[x];i;i=nxt[i])
if(level[to[i]]==-1&&w[i]){
level[to[i]]=level[x]+1;
if(to[i]==t)return 1;
q.push(to[i]);
}
}
return 0;
}
inline int dfs(int x,int flow){
if(x==t||!flow)return flow;
int res=0;
cur[x]=head[x];
for(int i=cur[x];i;i=nxt[i]){
cur[x]=i;
if(level[to[i]]==level[x]+1&&w[i]){
int f=dfs(to[i],min(w[i],flow-res));
w[i]-=f;
res+=f;
w[ano[i]]+=f;
}
}
if(!res)level[x]=-1;
return res;
}
int main(){
int i,j,k,Ans=0;
scanf("%d%d%d",&n,&m,&k);
s=2*n+1,t=s+1;
add(s,1,inf);
add(1,n+1,inf);
for(i=1;i<=m;i++){
int x,y;
scanf("%d%d",&x,&y);
add(x+n,y,inf);
add(y+n,x,inf);
}
for(i=1;i<=k;i++){
int x;
scanf("%d",&x);
add(x+n,t,inf);
add(x,x+n,inf);
used[x]=1;
}
for(i=2;i<=n;i++){
if(used[i])continue;
add(i,i+n,1);
}
while(bfs())while(int a=dfs(s,inf))Ans+=a;
cout<<Ans;
return 0;
}