zoukankan      html  css  js  c++  java
  • Round #345 B. Beautiful Paintings(Div.2)

    There are n pictures delivered for the new exhibition. The i-th painting has beauty ai. We know that a visitor becomes happy every time he passes from a painting to a more beautiful one.

    We are allowed to arranged pictures in any order. What is the maximum possible number of times the visitor may become happy while passing all pictures from first to last? In other words, we are allowed to rearrange elements ofa in any order. What is the maximum possible number of indices i (1 ≤ i ≤ n - 1), such that ai + 1 > ai.

    Input

    The first line of the input contains integer n (1 ≤ n ≤ 1000) — the number of painting.

    The second line contains the sequence a1, a2, ..., an (1 ≤ ai ≤ 1000), where ai means the beauty of the i-th painting.

    Output

    Print one integer — the maximum possible number of neighbouring pairs, such that ai + 1 > ai, after the optimal rearrangement.

    Examples
    input
    5
    20 30 10 50 40
    output
    4
    input
    4
    200 100 100 200
    output
    2
    Note

    In the first sample, the optimal order is: 10, 20, 30, 40, 50.

    In the second sample, the optimal order is: 100, 200, 100, 200.

     1 #include <bits/stdc++.h>
     2 #define N 100005
     3 #include <algorithm>
     4 using namespace std;
     5 
     6 int main()
     7 {
     8     int n;
     9     while(cin>>n)
    10     {
    11         int a[N],s,max;
    12         max=0;
    13         for(int i=0;i<n;i++)
    14          {
    15              cin>>s;
    16              a[s]++;
    17              if(max<a[s])
    18                 max=a[s];  //max最多重复次数的数字
    19          }
    20 
    21         cout<<n-max<<endl;   //因为max重复,不论n为多少,都会有max个重复的
    22     }
    23     return 0;
    24 }
  • 相关阅读:
    Servlet编程实例1
    Servlet
    JDBC之代码优化
    JDBC数据库编程
    数据库常识
    数据库基本操作
    STM32CUBEMX入门学习笔记3:HAL库以及STM32CUBE相关资料
    QT入门学习笔记2:QT例程
    爬虫制作入门学习笔记2:[转]python爬虫实例项目大全
    中移物联网onenet入门学习笔记2:中移物联的通信格式
  • 原文地址:https://www.cnblogs.com/z-712/p/7323569.html
Copyright © 2011-2022 走看看