zoukankan      html  css  js  c++  java
  • Round #345 B. Beautiful Paintings(Div.2)

    There are n pictures delivered for the new exhibition. The i-th painting has beauty ai. We know that a visitor becomes happy every time he passes from a painting to a more beautiful one.

    We are allowed to arranged pictures in any order. What is the maximum possible number of times the visitor may become happy while passing all pictures from first to last? In other words, we are allowed to rearrange elements ofa in any order. What is the maximum possible number of indices i (1 ≤ i ≤ n - 1), such that ai + 1 > ai.

    Input

    The first line of the input contains integer n (1 ≤ n ≤ 1000) — the number of painting.

    The second line contains the sequence a1, a2, ..., an (1 ≤ ai ≤ 1000), where ai means the beauty of the i-th painting.

    Output

    Print one integer — the maximum possible number of neighbouring pairs, such that ai + 1 > ai, after the optimal rearrangement.

    Examples
    input
    5
    20 30 10 50 40
    output
    4
    input
    4
    200 100 100 200
    output
    2
    Note

    In the first sample, the optimal order is: 10, 20, 30, 40, 50.

    In the second sample, the optimal order is: 100, 200, 100, 200.

     1 #include <bits/stdc++.h>
     2 #define N 100005
     3 #include <algorithm>
     4 using namespace std;
     5 
     6 int main()
     7 {
     8     int n;
     9     while(cin>>n)
    10     {
    11         int a[N],s,max;
    12         max=0;
    13         for(int i=0;i<n;i++)
    14          {
    15              cin>>s;
    16              a[s]++;
    17              if(max<a[s])
    18                 max=a[s];  //max最多重复次数的数字
    19          }
    20 
    21         cout<<n-max<<endl;   //因为max重复,不论n为多少,都会有max个重复的
    22     }
    23     return 0;
    24 }
  • 相关阅读:
    console.time测试代码块执行时间
    label表单的关联性
    attr返回被选元素的属性值
    2018 885程序设计编程题
    输出斐波拉数列的前n个数(n>=2)
    简单的光照贴图
    复杂纹理复制及纹理叠加效果
    简单纹理复制
    UV旋转shader
    shader实现积雪效果
  • 原文地址:https://www.cnblogs.com/z-712/p/7323569.html
Copyright © 2011-2022 走看看