zoukankan      html  css  js  c++  java
  • Round #345 C. Watchmen(Div.2)

    Watchmen are in a danger and Doctor Manhattan together with his friend Daniel Dreiberg should warn them as soon as possible. There are n watchmen on a plane, the i-th watchman is located at point (xi, yi).

    They need to arrange a plan, but there are some difficulties on their way. As you know, Doctor Manhattan considers the distance between watchmen i and j to be |xi - xj| + |yi - yj|. Daniel, as an ordinary person, calculates the distance using the formula .

    The success of the operation relies on the number of pairs (i, j) (1 ≤ i < j ≤ n), such that the distance between watchman i and watchmen j calculated by Doctor Manhattan is equal to the distance between them calculated by Daniel. You were asked to compute the number of such pairs.

    Input

    The first line of the input contains the single integer n (1 ≤ n ≤ 200 000) — the number of watchmen.

    Each of the following n lines contains two integers xi and yi (|xi|, |yi| ≤ 109).

    Some positions may coincide.

    Output

    Print the number of pairs of watchmen such that the distance between them calculated by Doctor Manhattan is equal to the distance calculated by Daniel.

    Examples
    input
    3
    1 1
    7 5
    1 5
    output
    2
    input
    6
    0 0
    0 1
    0 2
    -1 1
    0 1
    1 1
    output
    11
    Note

    In the first sample, the distance between watchman 1 and watchman 2 is equal to |1 - 7| + |1 - 5| = 10 for Doctor Manhattan and  for Daniel. For pairs (1, 1), (1, 5) and (7, 5), (1, 5)Doctor Manhattan and Daniel will calculate the same distances.

     1 #include <cstdio>
     2 #include <algorithm>
     3 using namespace std;
     4 struct Node
     5 {
     6     int x;
     7     int y;
     8 }a[200005];
     9 int cmp1(Node a,Node b)
    10 {
    11     if(a.x==b.x)
    12         return a.y<b.y;
    13     return a.x<b.x;
    14 }
    15 int cmp2(Node a,Node b)
    16 {
    17     if(a.y==b.y)
    18         return a.x<b.x;
    19     return a.y<b.y;
    20 }
    21 int main()
    22 {
    23     int n,i,j;
    24     long long ans,cnt,sum;
    25     while(~scanf("%d",&n))
    26     {
    27         for(i=0;i<n;i++)
    28             scanf("%d%d",&a[i].x,&a[i].y);
    29         ans=1;
    30         cnt=1;
    31         sum=0;
    32         sort(a,a+n,cmp1);      //第一次求对数
    33         for(i=1;i<n;i++)
    34         {
    35             if(a[i].x==a[i-1].x)
    36             {
    37                 ans++;
    38                 if(a[i].y==a[i-1].y)//重复的对数
    39                 {
    40                     cnt++;
    41                 }
    42                 else
    43                 {
    44                     sum-=cnt*(cnt-1)/2;
    45                     cnt=1;
    46                 }
    47             }
    48             else
    49             {
    50                 sum+=ans*(ans-1)/2;
    51                 sum-=cnt*(cnt-1)/2;
    52                 cnt=1;
    53                 ans=1;
    54             }
    55         }
    56         if(ans!=1)
    57             sum+=ans*(ans-1)/2;
    58         if(cnt!=1)
    59             sum-=cnt*(cnt-1)/2;
    60         sort(a,a+n,cmp2);//第二次求对数
    61         ans=1;
    62         for(i=1;i<n;i++)
    63         {
    64             if(a[i].y==a[i-1].y)
    65             {
    66                 ans++;
    67             }
    68             else
    69             {
    70                 sum+=ans*(ans-1)/2;
    71                 ans=1;
    72             }
    73         }
    74         if(ans!=1)
    75         {
    76             sum+=ans*(ans-1)/2;
    77         }
    78         printf("%lld
    ",sum);
    79     }
    80     return 0;
    81 }
  • 相关阅读:
    MPF源码分析之资源文件加载
    oracle存储过程代码日志记录
    fix8源码分析之日志模块
    oracle日期转整数
    记录OCI操作一个诡异的问题
    记录一个虚拟机重启网络启动失败问题
    buff占用内存高
    MFC程序编译链接问题汇总一
    回调函数模型设计
    利用call与apply向函数传递参数
  • 原文地址:https://www.cnblogs.com/z-712/p/7323580.html
Copyright © 2011-2022 走看看