zoukankan      html  css  js  c++  java
  • POJ 1759 Garland

    题目链接:https://vjudge.net/problem/POJ-1759

    题目大意

      有一个长度为N 的数列 H,满足:

    1. H[1] = A。
    2. H[N] = B。
    3. H[i] = (H[i - 1] + H[i + 1]) / 2 - 1,1 < i < N。
    4. H[i] >= 0,1 <= i <= N。

      现已知 A,问 B 最小是多少?

    分析

      先推一下公式,由题意可得:

    $$
    egin{align*}
    sum_{k = i}^{j} H[k] = H[i] + H[j] - (j - i - 1) + sum_{k = i + 1}^{j - 1} frac{H[i - 1] + H[i + 1]}{2} \
    化简后即:H[i + 1] + H[j - 1] = H[i] + H[j] - 2 * (j - i - 1) 
    end{align*} ag{1}
    $$

      再利用数学归纳法可以得到下面的式子:

    $$
    egin{align*}
    H[i] = (i - j + 1) * H[j] - (i - j) * H[j - 1] + (i - j) * (i - j + 1) 
    end{align*} ag{2}
    $$

      等会会用到上面两个式子。
      首先,数列 H 中最小的一项必然为 0,设 H[r] 为最后一个为 0 的项(反之可以得出 H[N] 还可以更小)。
      将 i = 1, j = N 带入(1),i = r 带入(2),并联立可以得到:

    $$
    egin{align*}
    H[r - 1] = 2 - r + frac{H[1]}{r - 1}
    end{align*} 
    $$

      进而可以得到:

    $$
    egin{align*}
    H[r + 1] = r - frac{H[1]}{r - 1}
    end{align*} 
    $$

      再将 i = N, j = r + 1 带入(2)可以得到 H[N] 关于 r 的表达式:

    $$
    egin{align*}
    H[N] = (N - r) *(N - 1 - frac{H[1]}{r - 1}),H[r - 1] geq 0, H[r + 1] geq 0
    end{align*}
    $$

      求一下导数得到 H[N] 在 H[1] == (r - 1)2 时取到最小值。考虑到此时 r 可能不是整数,因此只要讨论 r 两边的整数即可。

      对于 r > N - 1 的情况就不必算了,直接输出 0。

    代码如下

      1 #include <cmath>
      2 #include <ctime>
      3 #include <iostream>
      4 #include <string>
      5 #include <vector>
      6 #include <cstdio>
      7 #include <cstdlib>
      8 #include <cstring>
      9 #include <queue>
     10 #include <map>
     11 #include <set>
     12 #include <algorithm>
     13 #include <cctype>
     14 #include <stack>
     15 #include <deque>
     16 #include <list>
     17 #include <sstream>
     18 using namespace std;
     19  
     20 #define INIT() ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
     21 #define Rep(i,n) for (int i = 0; i < (n); ++i)
     22 #define For(i,s,t) for (int i = (s); i <= (t); ++i)
     23 #define rFor(i,t,s) for (int i = (t); i >= (s); --i)
     24 #define ForLL(i, s, t) for (LL i = LL(s); i <= LL(t); ++i)
     25 #define rForLL(i, t, s) for (LL i = LL(t); i >= LL(s); --i)
     26 #define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i)
     27 #define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i)
     28  
     29 #define pr(x) cout << #x << " = " << x << "  "
     30 #define prln(x) cout << #x << " = " << x << endl
     31  
     32 #define LOWBIT(x) ((x)&(-x))
     33  
     34 #define ALL(x) x.begin(),x.end()
     35 #define INS(x) inserter(x,x.begin())
     36 #define UNIQUE(x) x.erase(unique(x.begin(), x.end()), x.end())
     37 #define REMOVE(x, c) x.erase(remove(x.begin(), x.end(), c), x.end()); // 删去 x 中所有 c 
     38 #define TOLOWER(x) transform(x.begin(), x.end(), x.begin(),::tolower);
     39 #define TOUPPER(x) transform(x.begin(), x.end(), x.begin(),::toupper);
     40  
     41 #define ms0(a) memset(a,0,sizeof(a))
     42 #define msI(a) memset(a,inf,sizeof(a))
     43 #define msM(a) memset(a,-1,sizeof(a))
     44 
     45 #define MP make_pair
     46 #define PB push_back
     47 #define ft first
     48 #define sd second
     49  
     50 template<typename T1, typename T2>
     51 istream &operator>>(istream &in, pair<T1, T2> &p) {
     52     in >> p.first >> p.second;
     53     return in;
     54 }
     55  
     56 template<typename T>
     57 istream &operator>>(istream &in, vector<T> &v) {
     58     for (auto &x: v)
     59         in >> x;
     60     return in;
     61 }
     62  
     63 template<typename T1, typename T2>
     64 ostream &operator<<(ostream &out, const std::pair<T1, T2> &p) {
     65     out << "[" << p.first << ", " << p.second << "]" << "
    ";
     66     return out;
     67 }
     68 
     69 inline int gc(){
     70     static const int BUF = 1e7;
     71     static char buf[BUF], *bg = buf + BUF, *ed = bg;
     72     
     73     if(bg == ed) fread(bg = buf, 1, BUF, stdin);
     74     return *bg++;
     75 } 
     76 
     77 inline int ri(){
     78     int x = 0, f = 1, c = gc();
     79     for(; c<48||c>57; f = c=='-'?-1:f, c=gc());
     80     for(; c>47&&c<58; x = x*10 + c - 48, c=gc());
     81     return x*f;
     82 }
     83 
     84 template<class T>
     85 inline string toString(T x) {
     86     ostringstream sout;
     87     sout << x;
     88     return sout.str();
     89 }
     90 
     91 inline int toInt(string s) {
     92     int v;
     93     istringstream sin(s);
     94     sin >> v;
     95     return v;
     96 }
     97 
     98 //min <= aim <= max
     99 template<typename T>
    100 inline bool BETWEEN(const T aim, const T min, const T max) {
    101     return min <= aim && aim <= max;
    102 }
    103  
    104 typedef long long LL;
    105 typedef unsigned long long uLL;
    106 typedef pair< double, double > PDD;
    107 typedef pair< int, int > PII;
    108 typedef pair< int, PII > PIPII;
    109 typedef pair< string, int > PSI;
    110 typedef pair< int, PSI > PIPSI;
    111 typedef set< int > SI;
    112 typedef set< PII > SPII;
    113 typedef vector< int > VI;
    114 typedef vector< double > VD;
    115 typedef vector< VI > VVI;
    116 typedef vector< SI > VSI;
    117 typedef vector< PII > VPII;
    118 typedef map< int, int > MII;
    119 typedef map< int, string > MIS;
    120 typedef map< int, PII > MIPII;
    121 typedef map< PII, int > MPIII;
    122 typedef map< string, int > MSI;
    123 typedef map< string, string > MSS;
    124 typedef map< PII, string > MPIIS;
    125 typedef map< PII, PII > MPIIPII;
    126 typedef multimap< int, int > MMII;
    127 typedef multimap< string, int > MMSI;
    128 //typedef unordered_map< int, int > uMII;
    129 typedef pair< LL, LL > PLL;
    130 typedef vector< LL > VL;
    131 typedef vector< VL > VVL;
    132 typedef priority_queue< int > PQIMax;
    133 typedef priority_queue< int, VI, greater< int > > PQIMin;
    134 const double EPS = 1e-8;
    135 const LL inf = 0x3fffffff;
    136 const LL infLL = 0x3fffffffffffffffLL;
    137 const LL mod = 1e9 + 7;
    138 const int maxN = 1e5 + 7;
    139 const LL ONE = 1;
    140 const LL evenBits = 0xaaaaaaaaaaaaaaaa;
    141 const LL oddBits = 0x5555555555555555;
    142 
    143 int N, r;
    144 double A, B = inf; 
    145 
    146 int main(){
    147     //freopen("MyOutput.txt","w",stdout);
    148     //freopen("input.txt","r",stdin);
    149     //INIT();
    150     cin >> N >> A;
    151     r = sqrt(A) + 1 + EPS;
    152     if(r > N - 1) return printf("0.00
    ");;
    153     
    154     if((r - 2) * (r - 1) <= A && r * (r - 1) >= A) B = min(B, (N - r) * (N - 1 - 1.0 * A / (r - 1)));
    155     if(r * (r - 1) <= A && r * (r + 1) >= A) B = min(B, (N - r - 1) * (N - 1 - 1.0 * A / r));
    156     printf("%.2f
    ", B + EPS);
    157     return 0;
    158 }
    View Code
  • 相关阅读:
    965. 单值二叉树
    面试题 04.09. 二叉搜索树序列
    99. 恢复二叉搜索树
    98. 验证二叉搜索树
    centos6版本下的Python2.6升级到2.7
    操作MySQL-数据库的安装及Pycharm模块的导入
    操作微信-itchat库的安装
    2018中科大hackergame
    png图片IDAT块异常
    2018网鼎杯misc
  • 原文地址:https://www.cnblogs.com/zaq19970105/p/11165676.html
Copyright © 2011-2022 走看看