zoukankan      html  css  js  c++  java
  • 洛谷 P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)

    题意:求$sum_{i=1}^{n}sum_{j=1}^{m}lcm(i,j)$。

    开始开心(自闭)化简:

    $sum_{i=1}^{n}sum_{j=1}^{m}lcm(i,j)$

    =$sum_{d=1}^{n}sum_{i=1}^{n}sum_{j=1}^{m}frac{ij}{d}[gcd(i,j)==d]$

    =$sum_{d=1}^{n}sum_{i=1}^{lfloor frac{n}{d} floor}sum_{j=1}^{lfloor frac{m}{d} floor}ijd[gcd(i,j)==1]$

    =$sum_{d=1}^{n}dsum_{i=1}^{lfloor frac{n}{d} floor}mu(i)i^2S({lfloor frac{n}{id} floor})S({lfloor frac{m}{id} floor}),S(n)=(n+1)*n/2$

    =$sum_{T=1}^{n}S({lfloor frac{n}{T} floor})S({lfloor frac{m}{T} floor})sum_{d|T}d(frac{T}{d})^2mu(frac{T}{d})$

    =$sum_{T=1}^{n}S({lfloor frac{n}{T} floor})S({lfloor frac{m}{T} floor})Tsum_{d|T}(frac{T}{d})mu(frac{T}{d})$

    令$F(T)=Tsum_{d|T}(frac{T}{d})mu(frac{T}{d})$

    只需要预处理F的前缀和,前面整除分块问题就解决了。

    $F(1)=1,F(p^c)=mu(1)*1+mu(p)*p=1-p$

    可以知道F是一个积性函数,对T进行质因数分解,即可求得F(T),可以在筛质数的时候进行求解,具体看代码。

    #include <bits/stdc++.h>
    #define ll long long
    using namespace std;
    const int N=1e7+5;
    const int MD=20101009;
    bool p[N];
    int pri[N],f[N],tot;
    void init() {
        f[1]=1;
        for(int i=2;i<N;i++) {
            if(!p[i]) pri[tot++]=i,f[i]=1-i+MD;
            for(int j=0;j<tot&&i*pri[j]<N;j++) {
                p[i*pri[j]]=true;
                if(i%pri[j]==0) {
                    f[i*pri[j]]=f[i];
                    break;
                }
                else f[i*pri[j]]=1LL*f[i]*f[pri[j]]%MD;
            }
        }
        for(int i=1;i<N;i++) f[i]=1LL*f[i]*i%MD;
        for(int i=1;i<N;i++) f[i]=(f[i]+f[i-1])%MD;
    }
    int cal(int x) {
        return 1LL*x*(x+1)/2%MD;
    }
    int main() {
        init();
        int n,m;
        scanf("%d%d",&n,&m);
        if(n>m) swap(n,m);
        int ans=0;
        for(int l=1,r;l<=n;l=r+1) {
            r=min(n/(n/l),m/(m/l));
            ans=(ans+1LL*(f[r]-f[l-1]+MD)*cal(n/l)%MD*cal(m/l)%MD)%MD;
        }
        printf("%d
    ",ans);
        return 0;
    }
  • 相关阅读:
    对position的认知观
    对于布局的见解
    Java中的多态
    继承中类型的转换
    继承中方法的覆盖
    继承条件下的构造方法调用
    Java函数的联级调用
    关于java中String的用法
    凯撒密码
    检查java 中有多少个构造函数
  • 原文地址:https://www.cnblogs.com/zdragon1104/p/11545925.html
Copyright © 2011-2022 走看看