zoukankan      html  css  js  c++  java
  • HDU1003——DP——Max Sum

    Problem Description
    Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
     
    Input
    The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
     
    Output
    For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
     
    Sample Input
    2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
     
    Sample Output
    Case 1: 14 1 4 Case 2: 7 1 6
     
    Author
    Ignatius.L
     
    Recommend
    We have carefully selected several similar problems for you:  1176 1087 1069 2084 1058 
    很简单的dp,dp[i]表示以i为开头的值
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    const int maxn = 100010;
    const int inf = 0x3f3f3f3f;
    int a[maxn],dp[maxn];
    int T,n;
    
    int main()
    {
        scanf("%d",&T);
        for(int cas = 1; cas <= T; cas++){
            scanf("%d",&n);
            for(int i = 1; i <= n ;i++){
                scanf("%d",&a[i]);
                dp[i] = a[i];
            }
            for(int i = n-1; i >= 1; i--){
                dp[i] = max(dp[i], dp[i+1] + a[i]);
            }
           // for(int i = 1; i <= n; i++)
           //     printf("%d ",dp[i]);
            int index;
            int max1 = -inf;
            for(int i = 1; i <= n ;i++){
                if(max1 < dp[i]){
                     max1 = dp[i];
                    index = i;
                }
            }
            int res = 0;
            int index1;
            for(int i = index; i <= n; i++){
                res += a[i];
                if(res == max1){
                    index1 = i;
                    break;
                }
            }
        printf("Case %d:
    ",cas);
        printf("%d %d %d
    ",max1,index,index1);
       if(cas < T) printf("
    ");
        }
        return 0;
    }
            
    

      

  • 相关阅读:
    转载c++中的多态性
    sdk环境下数据库访问之ADO
    ADO数据库访问问题
    PopMenu 弹出式菜单(变灰,禁用,激活)
    控制台窗口界面控制设计
    判断整数序列是不是二元查找树的后序遍历结果
    把二元查找树转变成排序的双向链表
    二叉树平衡因子应用举例
    二元查找树转换为它的镜像
    满二叉树先序、中序和后序之间的转换
  • 原文地址:https://www.cnblogs.com/zero-begin/p/4520026.html
Copyright © 2011-2022 走看看