HDU5015 233 Matrix(矩阵高速幂)
题目大意:
给出n∗m矩阵,给出第一行a01,
a02, a03 ...a0m (各自是233, 2333, 23333...), 再给定第一列a10, a10, a10, a10,...an0.矩阵中的每一个元素等于左边的加上上面的,求出anm.
解题思路:
先要依据矩阵元素的特征得出相乘的矩阵T, 然后就是求这个矩阵T的m次幂(这里就能够用矩阵高速幂),最后再和给定的第一列所形成的矩阵相乘,就能得到anm。
求矩阵T请參考
代码:
#include <cstdio>
#include <cstring>
typedef long long ll;
const int N = 15;
const ll MOD = 10000007;
ll A[N][N];
int B[N];
int n;
ll m;
struct Rec {
ll v[N][N];
Rec () { memset (v, 0, sizeof (v));}
void init () {
for (int i = 0; i < n + 2; i++)
for (int j = 0; j < n + 2; j++)
v[i][j] = A[i][j];
}
Rec operator * (const Rec &a) {
Rec tmp;
for (int i = 0; i < n + 2; i++)
for (int j = 0; j < n + 2; j++)
for (int k = 0; k < n + 2; k++)
tmp.v[i][j] = (tmp.v[i][j] + (v[i][k] * a.v[k][j]) % MOD) % MOD;
return tmp;
}
Rec operator *= (const Rec &a) {
return *this = *this * a;
}
}num;
void init () {
memset (A, 0, sizeof (A));
for (int i = 0; i < n + 1; i++) {
A[i][0] = 10LL;
A[i][n + 1] = 1LL;
}
A[n + 1][n + 1] = 1LL;
for (int i = 1; i < n + 1; i++)
for (int j = 1; j <= i; j++)
A[i][j] = 1LL;
B[0] = 23;
}
Rec f(ll m) {
if (m == 1)
return num;
Rec tmp;
tmp = f(m / 2);
tmp *= tmp;
if (m % 2)
tmp *= num;
return tmp;
}
int main () {
while (scanf ("%d%lld", &n, &m) != EOF) {
for (int i = 1; i <= n; i++)
scanf ("%d", &B[i]);
init();
B[n + 1] = 3;
num.init ();
num = f(m);
/* for (int i = 0; i <= n + 1; i++) {
for (int j = 0; j <= n + 1; j++)
printf ("%lld ", num.v[i][j]);
printf ("
");
}*/
ll ans = 0;
for (int i = 0; i <= n + 1; i++)
ans = (ans + (num.v[n][i] * B[i]) % MOD) % MOD;
printf ("%lld
", ans);
}
return 0;
}