zoukankan      html  css  js  c++  java
  • HDU 4873 ZCC Loves Intersection(可能性)

    HDU 4873 ZCC Loves Intersection

    题目链接

    题意:d维的。长度为n的块中,每次选d条平行于各条轴的线段,假设有两两相交则点数加1,问每次得到点数的期望是多少

    思路:自己推还是差一些,转篇官方题接把,感觉自己想的没想到把分子那项拆分成几个多项式的和,然后能够转化为公式求解。

    2014 <wbr>Multi-University <wbr>Training <wbr>Contest <wbr>2--by <wbr>镇海中学 <wbr>解题报告

    2014 <wbr>Multi-University <wbr>Training <wbr>Contest <wbr>2--by <wbr>镇海中学 <wbr>解题报告

    代码:

    #include <cstdio>
    #include <cstring>
    #include <cmath>
    
    const int MAXN = 10005;
    
    struct bign {
        int len, num[MAXN];
    
        bign () {
    	len = 0;
    	memset(num, 0, sizeof(num));
        }
        bign (int number) {*this = number;}
        bign (const char* number) {*this = number;}
    
        void DelZero ();
        void Put ();
    
        void operator = (int number);
        void operator = (char* number);
    
        bool operator <  (const bign& b) const;
        bool operator >  (const bign& b) const { return b < *this; }
        bool operator <= (const bign& b) const { return !(b < *this); }
        bool operator >= (const bign& b) const { return !(*this < b); }
        bool operator != (const bign& b) const { return b < *this || *this < b;}
        bool operator == (const bign& b) const { return !(b != *this); }
    
        void operator ++ ();
        void operator -- ();
        bign operator + (const int& b);
        bign operator + (const bign& b);
        bign operator - (const int& b);
        bign operator - (const bign& b);
        bign operator * (const int& b);
        bign operator * (const bign& b);
        bign operator / (const int& b);
        //bign operator / (const bign& b);
        int operator % (const int& b);
    };
    /***************************************************/
    
    const int N = 10005;
    long long n, d, prime[N], cnt[N];
    int pn = 0, vis[N];
    bign zi, mu;
    
    void table() {
        for (long long i = 2; i < N; i++) {
    	prime[pn++] = i;
    	for (long long j = i * i; j < N; j += i)
    	    vis[j] = 1;
        }
    }
    
    bign qpow(long long x, long long k) {
        bign ans = 1;
        bign tmp = x;
        while (k) {
    	if (k&1) ans = ans * tmp;
    	tmp = tmp * tmp;
    	k >>= 1;
        }
        return ans;
    }
    
    void solve(long long num, long long val) {
        for (int i = 0; i < pn && prime[i] <= num; i++) {
    	while (num % prime[i] == 0) {
    	    cnt[i] += val;
    	    num /= prime[i];
    	}
        }
        if (num != 1) {
    	if (val > 0)
    	    zi = zi * qpow(num, val);
    	else if (val < 0)
    	    mu = mu * qpow(num, (-val));
        }
    }
    
    int main() {
        table();
        while (~scanf("%lld%lld", &n, &d)) {
    	zi = 1, mu = 1;
    	memset(cnt, 0, sizeof(cnt));
    	solve(d * (d - 1) / 2, 1);
    	solve(n + 4, 2);
    	solve(3, -2);
    	solve(n, -d);
    	for (int i = 0; i < pn; i++) {
    	    if (cnt[i] > 0)
    		zi = zi * qpow(prime[i], cnt[i]);
    	    else if (cnt[i] < 0)
    		mu = mu * qpow(prime[i], (-cnt[i]));
    	}
    	zi.Put();
    	if (mu != 1) {
    	    printf("/");
    	    mu.Put();
    	}
    	printf("
    ");
        }
        return 0;
    }
    
    
    /*********************************************/
    void bign::DelZero () {
        while (len && num[len-1] == 0)
    	len--;
    
        if (len == 0) {
    	num[len++] = 0;
        }
    }
    
    void bign::Put () {
        for (int i = len-1; i >= 0; i--) 
    	printf("%d", num[i]);
    }
    
    void bign::operator = (char* number) {
        len = strlen (number);
        for (int i = 0; i < len; i++)
    	num[i] = number[len-i-1] - '0';
    
        DelZero ();
    }
    
    void bign::operator = (int number) {
    
        len = 0;
        while (number) {
    	num[len++] = number%10;
    	number /= 10;
        }
    
        DelZero ();
    }
    
    bool bign::operator < (const bign& b) const {
        if (len != b.len)
    	return len < b.len;
        for (int i = len-1; i >= 0; i--)
    	if (num[i] != b.num[i])
    	    return num[i] < b.num[i];
        return false;
    }
    
    void bign::operator ++ () {
        int s = 1;
    
        for (int i = 0; i < len; i++) {
    	s = s + num[i];
    	num[i] = s % 10;
    	s /= 10;
    	if (!s) break;
        }
    
        while (s) {
    	num[len++] = s%10;
    	s /= 10;
        }
    }
    
    void bign::operator -- () {
        if (num[0] == 0 && len == 1) return;
    
        int s = -1;
        for (int i = 0; i < len; i++) {
    	s = s + num[i];
    	num[i] = (s + 10) % 10;
    	if (s >= 0) break;
        }
        DelZero ();
    }
    
    bign bign::operator + (const int& b) {
        bign a = b;
        return *this + a;
    }
    
    bign bign::operator + (const bign& b) {
        int bignSum = 0;
        bign ans;
    
        for (int i = 0; i < len || i < b.len; i++) {
    	if (i < len) bignSum += num[i];
    	if (i < b.len) bignSum += b.num[i];
    
    	ans.num[ans.len++] = bignSum % 10;
    	bignSum /= 10;
        }
    
        while (bignSum) {
    	ans.num[ans.len++] = bignSum % 10;
    	bignSum /= 10;
        }
    
        return ans;
    }
    
    bign bign::operator - (const int& b) {
        bign a = b;
        return *this - a;
    }
    
    
    bign bign::operator - (const bign& b) {
        int bignSub = 0;
        bign ans;
        for (int i = 0; i < len || i < b.len; i++) {
    	bignSub += num[i];
    	bignSub -= b.num[i];
    	ans.num[ans.len++] = (bignSub + 10) % 10;
    	if (bignSub < 0) bignSub = -1;
        }
        ans.DelZero ();
        return ans;
    }
    
    bign bign::operator * (const int& b) {
        long long bignSum = 0;
        bign ans;
    
        ans.len = len;
        for (int i = 0; i < len; i++) {
    	bignSum += (long long)num[i] * b;
    	ans.num[i] = bignSum % 10;
    	bignSum /= 10;
        }
    
        while (bignSum) {
    	ans.num[ans.len++] = bignSum % 10;
    	bignSum /= 10;
        }
    
        return ans;
    }
    
    bign bign::operator * (const bign& b) {
        bign ans;
        ans.len = 0; 
    
        for (int i = 0; i < len; i++){  
    	int bignSum = 0;  
    
    	for (int j = 0; j < b.len; j++){  
    	    bignSum += num[i] * b.num[j] + ans.num[i+j];  
    	    ans.num[i+j] = bignSum % 10;  
    	    bignSum /= 10;
    	}  
    	ans.len = i + b.len;  
    
    	while (bignSum){  
    	    ans.num[ans.len++] = bignSum % 10;  
    	    bignSum /= 10;
    	}  
        }  
        return ans;
    }
    
    bign bign::operator / (const int& b) {
    
        bign ans;
    
        int s = 0;
        for (int i = len-1; i >= 0; i--) {
    	s = s * 10 + num[i];
    	ans.num[i] = s/b;
    	s %= b;
        }
    
        ans.len = len;
        ans.DelZero ();
        return ans;
    }
    
    int bign::operator % (const int& b) {
    
        bign ans;
    
        int s = 0;
        for (int i = len-1; i >= 0; i--) {
    	s = s * 10 + num[i];
    	ans.num[i] = s/b;
    	s %= b;
        }
    
        return s;
    }


    版权声明:本文博客原创文章。博客,未经同意,不得转载。

  • 相关阅读:
    asp.net Ctrl+回车提交
    Request.Form.Keys保存的是什么?
    让iframe子窗体取父窗体地址栏参数(querystring)
    Repeater在无数据记录时显示类似GridView空模板(EmptyDataTemplate)
    jQuery与javascript对照学习(获取父子前后元素)
    internet缓存Temp中的tmp文件
    C#反射遍历一个对象属性(小技巧)
    silverlight序列化反序列化,在c#其他程序反序列化
    Silverlight序列化反序列化(json.net)
    卸载oracle
  • 原文地址:https://www.cnblogs.com/zfyouxi/p/4655795.html
Copyright © 2011-2022 走看看