zoukankan      html  css  js  c++  java
  • cf498C Array and Operations

    C. Array and Operations
    time limit per test 1 second
    memory limit per test 256 megabytes
    input standard input
    output standard output

    You have written on a piece of paper an array of n positive integers a[1], a[2], ..., a[n] and m good pairs of integers (i1, j1), (i2, j2), ..., (im, jm). Each good pair (ik, jk) meets the following conditions: ik + jk is an odd number and 1 ≤ ik < jk ≤ n.

    In one operation you can perform a sequence of actions:

    • take one of the good pairs (ik, jk) and some integer v (v > 1), which divides both numbers a[ik] and a[jk];
    • divide both numbers by v, i. e. perform the assignments:  and .

    Determine the maximum number of operations you can sequentially perform on the given array. Note that one pair may be used several times in the described operations.

    Input

    The first line contains two space-separated integers nm (2 ≤ n ≤ 100, 1 ≤ m ≤ 100).

    The second line contains n space-separated integers a[1], a[2], ..., a[n] (1 ≤ a[i] ≤ 109) — the description of the array.

    The following m lines contain the description of good pairs. The k-th line contains two space-separated integers ikjk (1 ≤ ik < jk ≤ nik + jk is an odd number).

    It is guaranteed that all the good pairs are distinct.

    Output

    Output the answer for the problem.

    Sample test(s)
    input
    3 2
    8 3 8
    1 2
    2 3
    output
    0
    input
    3 2
    8 12 8
    1 2
    2 3
    output
    2

    恶补网络流中
    把数字奇偶分开,显然询问是1奇1偶的,那么相当于在二分图上搞了
    枚举每一个质因数,建图,网络流。没了。拆点都不要
    #include<cstdio>
    #include<iostream>
    #include<cstring>
    #include<cmath>
    #define LL long long
    #define inf 0x3ffffff
    #define S 0
    #define T 99999
    #define N 200010
    using namespace std;
    inline LL read()
    {
        LL x=0,f=1;char ch=getchar();
        while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
        while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
        return x*f;
    }
    struct edge{int to,next,v;}e[10*N];
    int head[N];
    int a[N],h[N],q[N],u[N],v[N];
    int n,m,cnt=1,ans;
    inline void ins(int u,int v,int w)  
    {  
        e[++cnt].v=w;  
        e[cnt].to=v;  
        e[cnt].next=head[u];  
        head[u]=cnt;  
    }  
    inline void insert(int u,int v,int w)  
    {  
        ins(u,v,w);  
        ins(v,u,0);  
    }
    inline bool bfs()
    {
    	int t=0,w=1;
    	memset(h,-1,sizeof(h));
    	q[1]=S;h[S]=0;
    	while (t<w)
    	{
    		int now=q[++t];
    		for (int i=head[now];i;i=e[i].next)
    		  if (e[i].v&&h[e[i].to]==-1)
    		  {
    		  	h[e[i].to]=h[now]+1;
    		  	q[++w]=e[i].to;
    		  }
    	}
    	if (h[T]==-1)return 0;
    	return 1;
    }
    inline int dfs(int x,int f)
    {
    	if (x==T||!f)return f;
    	int w,used=0;
    	for (int i=head[x];i;i=e[i].next)
    		if (e[i].v&&h[e[i].to]==h[x]+1)
    		{
    			w=dfs(e[i].to,min(e[i].v,f-used));
    			e[i].v-=w;
    			e[i^1].v+=w;
    			used+=w;
    			if (f==used)return f;
    		}
    	if (!used)h[x]=-1;
    	return used;
    }
    inline void dinic(){while (bfs())ans+=dfs(S,inf);}
    inline void solve(int x)
    {
    	cnt=1;
    	memset(head,0,sizeof(head));
    	for (int i=1;i<=n;i++)
    	{
    		int t=0;
    		while (a[i]%x==0)t++,a[i]/=x;
    		if(i&1)insert(S,i,t);
    		else insert(i+n,T,t);
    	}
    	for (int i=1;i<=m;i++)insert(u[i],v[i]+n,inf);
    	dinic();
    }
    int main()
    {
    	n=read();m=read();
    	for (int i=1;i<=n;i++)a[i]=read();
    	for (int i=1;i<=m;i++)
    	{
    		u[i]=read();
    		v[i]=read();
    		if (u[i]%2==0)swap(u[i],v[i]);
    	}
    	for (int i=1;i<=n;i++)
    	{
    		int t=sqrt(a[i]);
    		for (int j=2;j<=t;j++)if (a[i]%j==0)solve(j);
    		if (a[i]!=1)solve(a[i]);
    	}
    	printf("%d
    ",ans);
    	return 0;
    }
    
    ——by zhber,转载请注明来源
  • 相关阅读:
    进程池和线程池、协程、TCP单线程实现并发
    GIL全局解释锁,死锁,信号量,event事件,线程queue,TCP服务端实现并发
    进程补充和线程的介绍
    进程的介绍和使用
    异常处理和UDP Socket套接字
    TCP Socket 套接字 和 粘包问题
    网络编程
    面向对象高级——反射和元类
    面向对象三大特性之——多态和一些内置函数
    面向对象-内置方法
  • 原文地址:https://www.cnblogs.com/zhber/p/4187423.html
Copyright © 2011-2022 走看看