zoukankan      html  css  js  c++  java
  • cf359D Pair of Numbers

    Simon has an array a1, a2, ..., an, consisting of n positive integers. Today Simon asked you to find a pair of integers l, r (1 ≤ l ≤ r ≤ n), such that the following conditions hold:

    1. there is integer j (l ≤ j ≤ r), such that all integers al, al + 1, ..., ar are divisible by aj;
    2. value r - l takes the maximum value among all pairs for which condition 1 is true;

    Help Simon, find the required pair of numbers (l, r). If there are multiple required pairs find all of them.

    Input

    The first line contains integer n (1 ≤ n ≤ 3·105).

    The second line contains n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 106).

    Output

    Print two integers in the first line — the number of required pairs and the maximum value of r - l. On the following line print all l values from optimal pairs in increasing order.

    Example

    Input
    5
    4 6 9 3 6
    Output
    1 3
    2
    Input
    5
    1 3 5 7 9
    Output
    1 4
    1
    Input
    5
    2 3 5 7 11
    Output
    5 0
    1 2 3 4 5

    Note

    In the first sample the pair of numbers is right, as numbers 6, 9, 3 are divisible by 3.

    In the second sample all numbers are divisible by number 1.

    In the third sample all numbers are prime, so conditions 1 and 2 are true only for pairs of numbers (1, 1), (2, 2), (3, 3), (4, 4), (5, 5).

    要找个最长区间,使得区间里存在一个数x,区间其他数都能被它整除

    对于一个i,直接暴力O(n)找左右两边能被a[i]整除的最远的l,r

    同时,如果找到了一个i的[l,r],那么对于所有i<j<=r,a[i] | a[j],所以a[j]的对应[l,r]不会比i的更优

    所以做完 i 之后可以直接 i 跳到 r+1 的位置

    这样还挺快啊?

     1 #include<cstdio>
     2 #include<iostream>
     3 #include<cstring>
     4 #include<cstdlib>
     5 #include<algorithm>
     6 #include<cmath>
     7 #include<queue>
     8 #include<deque>
     9 #include<set>
    10 #include<map>
    11 #include<ctime>
    12 #define LL long long
    13 #define inf 0x7ffffff
    14 #define pa pair<int,int>
    15 #define mkp(a,b) make_pair(a,b)
    16 #define pi 3.1415926535897932384626433832795028841971
    17 using namespace std;
    18 inline LL read()
    19 {
    20     LL x=0,f=1;char ch=getchar();
    21     while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    22     while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    23     return x*f;
    24 }
    25 int n;
    26 int a[300010];
    27 int len,tot;
    28 int ans[300010];
    29 int main()
    30 {
    31     n=read();
    32     for (int i=1;i<=n;i++)a[i]=read();
    33     for (int i=1;i<=n;i++)
    34     {
    35         int l=i,r=i;
    36         while (l>=1&&a[l]%a[i]==0)l--;l++;
    37         while (r<=n&&a[r]%a[i]==0)r++;r--;
    38         if (r-l>len){len=r-l;tot=1;ans[tot]=l;}
    39         else if (r-l==len)ans[++tot]=l;
    40         i=r;
    41     }
    42     printf("%d %d
    ",tot,len);
    43     for(int i=1;i<=tot;i++)printf("%d ",ans[i]);
    44 }
    cf359D
  • 相关阅读:
    Spring中的事务传播行为与隔离级别
    redis分布式共享锁模拟抢单的实现
    synchronized关键字修饰非静态方法与静态方法的区别
    docker安装Tensorflow并使用jupyter notebook
    python 图像处理(4):图像的绘制
    python 图像处理(3):图像数据类型及颜色空间转换
    python 图像处理 (2):图像像素的访问与裁剪
    python 读取图像的几种方法
    python 图像处理:图像的读取、显示与保存
    NLP 正向、逆向 分词
  • 原文地址:https://www.cnblogs.com/zhber/p/7284530.html
Copyright © 2011-2022 走看看