35分做法
用堆来取最大值,暴力更新其余数的值。
65~85分做法
还是用堆来取最大值,其余的数增加可以变成新切开的两个数减少,最后统一加上一个数。
#include <queue> #include <cstdio> #include <iostream> #include <algorithm> #define LL long long LL q, u, v; int n, m, t; std::priority_queue <LL> Q; inline int read() { int x = 0, f = 1; char ch = getchar(); for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -1; for(; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - '0'; return x * f; } int main() { int i; LL x, y; n = read(); m = read(); q = read(); u = read(); v = read(); t = read(); for(i = 1; i <= n; i++) { x = read(); Q.push(x); } for(i = 1; i <= m; i++) { if(i % t == 0) printf("%lld ", (LL)Q.top() + (i - 1) * q); x = (LL)(Q.top() + (i - 1) * q) * u / v; y = (LL)Q.top() + (i - 1) * q - x; Q.pop(); Q.push(x - i * q); Q.push(y - i * q); } puts(""); for(i = 1; i <= n + m; i++) { if(i % t == 0) printf("%lld ", (LL)Q.top() + m * q); Q.pop(); } return 0; }
100分做法
先排序。
将最大的切成两个小的分别放到另两个队列b和c里。
取最大值的话就从这3个队列的队头找最大的,切完后再放回b和c队列队尾。
这样b和c始终是单调递减。
同样,其余的增加可以换成切出来的另两个减少。
#include <queue> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #define N 7000003 #define LL long long #define max(x, y) ((x) > (y) ? (x) : (y)) #define Max(x, y, z) ((x) > max(y, z) ? (x) : max(y, z)) LL q, u, v, a[N], b[N], c[N]; int n, m, t, t1, t2 = 1, t3 = 1, cnt; inline int read() { int x = 0, f = 1; char ch = getchar(); for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -1; for(; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - '0'; return x * f; } int main() { int i; LL x, y; t1 = n = read(); m = read(); q = read(); u = read(); v = read(); t = read(); a[0] = -(~(1 << 31)); memset(b, -127 / 3, sizeof(b)); memset(c, -127 / 3, sizeof(c)); for(i = 1; i <= n; i++) a[i] = read(); std::sort(a + 1, a + n + 1); for(i = 1; i <= m; i++) { if(i % t == 0) printf("%lld ", Max(a[t1], b[t2], c[t3]) + (i - 1) * q); if(Max(a[t1], b[t2], c[t3]) == a[t1] && t1 >= 1) { cnt++; x = (a[t1] + (i - 1) * q) * u / v; y = a[t1] + (i - 1) * q - x; b[cnt] = x - i * q; c[cnt] = y - i * q; t1--; } else if(Max(a[t1], b[t2], c[t3]) == b[t2] && t2 <= cnt) { cnt++; x = (b[t2] + (i - 1) * q) * u / v; y = b[t2] + (i - 1) * q - x; b[cnt] = x - i * q; c[cnt] = y - i * q; t2++; } else { cnt++; x = (c[t3] + (i - 1) * q) * u / v; y = c[t3] + (i - 1) * q - x; b[cnt] = x - i * q; c[cnt] = y - i * q; t3++; } } puts(""); for(i = 1; i <= n + m; i++) { if(i % t == 0) printf("%lld ", Max(a[t1], b[t2], c[t3]) + m * q); if(Max(a[t1], b[t2], c[t3]) == a[t1] && t1 >= 1) t1--; else if(Max(a[t1], b[t2], c[t3]) == b[t2] && t2 <= cnt) t2++; else t3++; } return 0; }
由这个题可见还是得多挖掘题目给出的性质。