测试环境准备
创建测试表
-- 表结构示例
CREATE TABLE `g_device_action_base` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`uid` char(32) DEFAULT '',
`domain_id` char(16) DEFAULT '',
`machine` char(200) NOT NULL DEFAULT '',
`app_type` char(32) NOT NULL DEFAULT '' ,
`app_id` char(32) NOT NULL DEFAULT '' ,
`action_time` int(11) NOT NULL DEFAULT '0',
`action_status` int(11) NOT NULL DEFAULT '0',
`source` char(32) NOT NULL DEFAULT '',
`url` varchar(512) NOT NULL DEFAULT '' COMMENT 'url',
PRIMARY KEY (`id`)
) ENGINE=InnoDB;
-- 记录示例
mysql> select * from g_device_action_base limit 1G
id: 24244024
uid: 779085e3ac9
domain_id: LhziEhqb8W
machine: DBA
app_type: wechat
app_id: 3e261dcf5485fb0f1c00
action_time: 1595222484
action_status: 1
source: jw_app_hard
url: https://www.cnblogs.com/zhenxing/
-- 造数据
-- 插入一条基础数据
set session sql_log_bin=off;
insert into g_device_action_base(uid,domain_id,machine,app_type,app_id,action_time,action_status,source,url)
values('779085e3ac9a32e8927099c2be506228','LhziEhqb8WgS','IOS','jw_app_thirdapp','3e261dcf5485fb0f1c0052f838ae6779',1595222484,1,'zhenxing','https://www.cnblogs.com/zhenxing/');
-- 反复执行,成倍增加
insert into g_device_action_base(id,uid,domain_id,machine,app_type,app_id,action_time,action_status,source,url) select null,uid,domain_id,machine,app_type,app_id,action_time,action_status,source,url from g_device_action_base;
-- 直到生成100W测试数据
select count(*) from g_device_action_base;
-- 基于数据基础表创建测试表
create table g_device_action like g_device_action_base;
灌测试数据
假设g_device_action_base表注入了100万测试数据,现在要模拟5000万的数据删除操作,循环50次,每次重复插入100万数据到g_device_action表中,以下是基本的插入数据的脚本逻辑
#!/bin/bash
for ((i=1;i<=50;i++))
do
echo "load batch $i"
mysql <<EOF
set session sql_log_bin=off;
use demo
insert into g_device_action(uid,domain_id,machine,app_type,app_id,action_time,action_status,source,url)
select uid,domain_id,machine,app_type,app_id,action_time,action_status,source,url from g_device_action_base;
select sleep(2);
EOF
done
创建日志表
日志表用来分批次删除数据的状态和执行时间等情况,便于追溯删除操作
CREATE TABLE `delete_batch_log` (
`ID` bigint(20) PRIMARY key AUTO_INCREMENT,
`BATCH_ID` bigint(20) NOT NULL comment "批次号",
`SCHEMA_NAME` varchar(64) NOT NULL comment "数据库名称",
`TABLE_NAME` varchar(64) NOT NULL comment "表名称",
`BATCH_COUNT` bigint(20) NOT NULL comment "涉及的记录数",
`BEGIN_RECORD` varchar(100) DEFAULT NULL comment "ID最小值",
`END_RECORD` varchar(100)DEFAULT NULL comment "ID最大值",
`BEGIN_TIME` datetime(6) DEFAULT NULL comment "开始时间",
`END_TIME` datetime(6) DEFAULT NULL comment "结束时间",
`ERROR_NO` bigint(20) DEFAULT NULL comment "错误码",
`crc32_values` varchar(64) DEFAULT NULL comment "校验码"
);
-- 创建相关查询需要的索引
CREATE INDEX IDX_DELETE_BATCH_LOG_M1 ON delete_batch_log(BEGIN_RECORD,END_RECORD);
CREATE INDEX IDX_DELETE_BATCH_LOG_M2 ON delete_batch_log(BEGIN_TIME,END_TIME);
CREATE INDEX IDX_DELETE_BATCH_LOG_M3 ON delete_batch_log(TABLE_NAME,SCHEMA_NAME);
运行删除数据操作
脚本
batch_delete_table.sh
完成了以下任务
- 设置批量删除的并发度
- 连接MySQL查询出该表的最小主键ID和最大主键ID
- 基于最小主键ID和最大主键ID计算以每批次1万条记录的区间,需要执行多少次循环
- 将删除操作的会话级别设置为RR且binlog格式设置为statement减少binlog的写入量(减少IO压力及从库回放压力)
- 将每个批次的删除操作基本信息写入到日志表中,包含以下信息
- 数据库名称
- 数据表名称
- 批次号
- 该批次删除的记录数
- 该批次的起始ID
- 该批次的结束ID
- 该批次删除的开始时间
- 该批次删除的结束时间
- 该批次删除是否存在错误(记录错误码)
#!/bin/bash
## SET MySQL CONN INFO
MYSQL_HOST=10.186.61.162
MYSQL_USER=zhenxing
MYSQL_PASS=zhenxing
MYSQL_PORT=3306
MYSQL_DB=demo
BATCH_ROWS=10000
MYSQL_TABLE=g_device_action
PARALLEL_WORKERS=5
## Create Named pipe And File descriptor
[ -e /tmp/fd1 ] || mkfifo /tmp/fd1
exec 3<>/tmp/fd1
rm -rf /tmp/fd1
## Set the parallel
for ((i=1;i<= $PARALLEL_WORKERS;i++))
do
echo >&3
done
MINID=`mysql -sse "select min(id) from ${MYSQL_DB}.${MYSQL_TABLE};"`
BATCH_TOTAL=`mysql -sse "select ceil((max(id)-min(id))/${BATCH_ROWS}) from ${MYSQL_DB}.${MYSQL_TABLE};"`
## PARALLEL LOAD DATA
for ((i=1;i<=$BATCH_TOTAL;i++))
do
read -u3
{
BEGIN_RECORD=$[($i-1)*${BATCH_ROWS}+${MINID}]
END_RECORD=$[($i-0)*${BATCH_ROWS}+${MINID}]
mysql -h$MYSQL_HOST -u$MYSQL_USER -p$MYSQL_PASS -P$MYSQL_PORT << EOF
set session transaction_isolation='REPEATABLE-READ';
set session binlog_format='statement';
-- set session sql_log_bin=off;
set @BEGIN_TIME=now(6);
select count(*),CONV(bit_xor(crc32(concat_ws('',id,uid,domain_id,machine,app_type,app_id,action_time,action_status,source,url))),10,16) into @row_count,@crc32_values from ${MYSQL_DB}.${MYSQL_TA
BLE} where id>=${BEGIN_RECORD} and id<${END_RECORD} and action_time<1595222485;
delete from ${MYSQL_DB}.${MYSQL_TABLE} where id>=${BEGIN_RECORD} and id<${END_RECORD} and action_time<1595222485;
set @END_TIME=now(6);
GET DIAGNOSTICS @p1=NUMBER,@p2=ROW_COUNT;
insert into ${MYSQL_DB}.delete_batch_log(BATCH_ID,SCHEMA_NAME,TABLE_NAME,BATCH_COUNT,BEGIN_RECORD,END_RECORD,BEGIN_TIME,END_TIME,ERROR_NO,crc32_values) values (${i},'${MYSQL_DB}','${MYSQL
_TABLE}',@row_count,${BEGIN_RECORD},${END_RECORD},@BEGIN_TIME,@END_TIME,@p1,@crc32_values);
EOF
echo >&3
} &
done
wait
exec 3<&-
exec 3>&-
删除后的收尾操作
删除完成后可用以下SQL查看删除的汇总情况
select SCHEMA_NAME,TABLE_NAME,min(BATCH_ID) as "最小批次",max(BATCH_ID) as "最大批次",sum(BATCH_COUNT) as "删除记录总数",min(BEGIN_TIME) as "开始时间",max(END_TIME) as "结束时间",TIMESTAMPDIFF(SECOND,min(BEGIN_TIME),max(END_TIME)) as "时间消耗(秒)" from delete_batch_log group by SCHEMA_NAME,TABLE_NAME;
*************************** 1. row ***************************
SCHEMA_NAME: demo
TABLE_NAME: g_device_action
最小批次: 1
最大批次: 5415
删除记录总数: 51534336
开始时间: 2020-07-16 10:56:46.347799
结束时间: 2020-07-16 11:00:29.617498
时间消耗(秒): 223
1 row in set (0.01 sec)
大表通过以上方式删除大量数据后,磁盘表空间并不会释放,需要将表进行收缩,该操作根据表空间的大小执行时间不同,以当前测试环境为例,表空间大小为32G,删除了5000万数据,耗时约1分钟
alter table g_device_action engine=innodb;
删除5000万条记录,基于statement模式产生的binlog约20M
校验命令
select count(*),CONV(bit_xor(crc32(concat(id,uid,domain_id,machine,app_type,app_id,action_time,action_status,source,url))),10,16) as crc32_values from g_device_action where id>=12520001 and id<12530001;
MySQL 列转行
set global group_concat_max_len=102400;
set group_concat_max_len=102400;
SELECT @@global.group_concat_max_len;
SELECT @@group_concat_max_len;
select table_name,concat(group_concat(COLUMN_NAME order by ORDINAL_POSITION separator ',')) as all_columns
from information_schema.COLUMNS tb1
where table_schema='demo'
and table_name='g_device_action'
group by table_name;