zoukankan      html  css  js  c++  java
  • Logistic回归 逻辑回归 练习——以2018建模校赛为数据源

    把上次建模校赛一个根据三围将女性分为四类(苹果型、梨形、报纸型、沙漏)的问题用逻辑回归实现了,包括从excel读取数据等一系列操作。

    Excel的格式如下:假设有r列,则前r-1列为数据,最后一列为类别,类别需要从1开始1~k类

    如上表所示,前10列是身高、胸围、臀围等数据(以及胸围和腰围、胸围和臀围的比值),最后一列1表示属于苹果型。

    import tensorflow as tf
    import os
    import numpy
    import xlrd
    
    XDATA = 0
    YDATA = 0
    one_hot_size = 0
    M = 0
    
    
    def readData():
        global XDATA, YDATA, one_hot_size, M
        workbook = xlrd.open_workbook('divdata.xlsx')
        booksheet = workbook.sheet_by_index(0)
        col = booksheet.ncols
        row = booksheet.nrows
        M = row
        tempcol = []
        for i in range(col - 1):
            tempcol = tempcol + booksheet.col_values(i)
        XDATA = numpy.array(tempcol).reshape(col - 1, row).T
        one_hot_size = int(max(booksheet.col_values(col - 1)))
        YDATA = numpy.zeros([row, one_hot_size])
        for i in range(row):
            YDATA[i, int(booksheet.cell_value(i, col - 1) - 1)] = 1
    
    
    def getData(batch_size):
        ran = numpy.random.randint(0, M - 1, [batch_size])
        # print(ran)
        return XDATA[ran], YDATA[ran]
    
    
    readData()
    checkpoint_dir = 'modelsave/'
    learning_rate = 0.0005
    save_step = 100
    total_step = 1000
    batch_size = 1000
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    
    x = tf.placeholder(tf.float32, [None, 10], name='x')
    y_data = tf.placeholder(tf.float32, [None, 4], name='data')
    # y = tf.Variable(tf.zeros(4,1), dtype=tf.float32,name='y')
    # w = tf.Variable(tf.zeros([10, 4], dtype=tf.float32))
    w = tf.Variable(numpy.zeros([10, 4]),dtype=tf.float32)
    # b = tf.Variable(tf.zeros([1, 4], dtype=tf.float32))
    b = tf.Variable(numpy.zeros([1,4]),dtype=tf.float32)
    y = tf.nn.softmax(tf.matmul(x, w) + b)
    
    loss = tf.reduce_mean(-tf.reduce_sum(y_data * tf.log(y), reduction_indices=1))  # 损失函数
    optimizer = tf.train.GradientDescentOptimizer(learning_rate)  # 选择梯度下降的方法
    train_op = optimizer.minimize(loss)  # 迭代的目标:最小化损失函数
    sess = tf.InteractiveSession(config=config)  # 设置按需使用GPU
    saver = tf.train.Saver()  # 用来存储训练结果
    
    if not os.path.exists(checkpoint_dir):
        os.mkdir(checkpoint_dir)
    
    #############################
    # 读取并初始化:
    ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
    if ckpt and ckpt.model_checkpoint_path:
        saver.restore(sess, ckpt.model_checkpoint_path)
    else:
        sess.run(tf.global_variables_initializer())
    ##############################
    
    
    print(sess.run(b))
    for i in range(total_step):
        batch = getData(batch_size)
        # print(batch[0])
        # print(batch[1])
        sess.run(train_op, feed_dict={x: batch[0], y_data: batch[1]})
        if (i + 1) % save_step == 0:
            print(i + 1, sess.run(w), sess.run(b))
            saver.save(sess, checkpoint_dir + 'model.ckpt', global_step=i + 1)  # 储存
    
    writer = tf.summary.FileWriter('./my_graph', sess.graph)  # tensorboard使用
    
    writer.close()
    sess.close()
    
    # 查看tensorboard的代码 在命令行输入:
    # tensorboard --logdir=C:UsersRear82PycharmProjectsMM_School_2018my_graph

    训练完成之后,使用以下代码读取并测试模拟:

    import tensorflow as tf
    import os
    import numpy
    
    
    checkpoint_dir = 'modelsave/'
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    
    x = tf.placeholder(tf.float32, [None, 10], name='x')
    w = tf.Variable(numpy.zeros([10, 4]),dtype=tf.float32)
    b = tf.Variable(numpy.zeros([1,4]),dtype=tf.float32)
    y = tf.nn.softmax(tf.matmul(x, w) + b)
    
    sess = tf.InteractiveSession(config=config)  # 设置按需使用GPU
    saver = tf.train.Saver()  # 用来存储训练结果
    
    if not os.path.exists(checkpoint_dir):
        os.mkdir(checkpoint_dir)
    
    #############################
    # 读取并初始化:
    ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
    if ckpt and ckpt.model_checkpoint_path:
        saver.restore(sess, ckpt.model_checkpoint_path)
    else:
        print("Can't find trained nn.")
    ##############################
    
    jdata = [[167,86,72,71.5,76.5,90.5,119.4444444,120.2797203,112.4183007,95.02762431]]
    print(jdata)
    print(sess.run(y,feed_dict={x:jdata}))
    
    sess.close()

    训练了3000次后:

    w:

    b:

  • 相关阅读:
    Qt5."Clang Code Model"一些设置
    基于element表格的合并多个行实例
    vue中,基于echarts 地图实现一个人才回流的大数据展示效果
    vue2.0 子组件props接受父组件传递的值,能不能修改的问题整理
    vue调用组件,组件回调给data中的数组赋值,报错Invalid prop type check failed for prop value. Expecte
    vue,基于element的tree组件封装
    vue父子组件相互传值的实例
    基于vant实现一个问卷调查
    css3实现倾斜转动的转盘
    0801 am使用tp框架对数据库增删改查
  • 原文地址:https://www.cnblogs.com/zinyy/p/9190027.html
Copyright © 2011-2022 走看看