zoukankan      html  css  js  c++  java
  • 「CF894E」 Ralph and Mushrooms

    传送门
    Luogu

    解题思路

    首先我们要发现:在同一个强连通分量里的所有边都是可以无限走的。
    那么我们就有了思路:先缩点,再跑拓扑排序。
    那么问题就是 ( ext{DP}) 状态如何初始化。
    我们首先考虑一条原始边权为 (c) 的边,无限走可以刷出多少贡献:
    假设我们走 (t) 次就可以把这条边刷完,那么 (t) 应该是满足下面这个式子的最大整数:

    [frac{t(t+1)}{2}< c ]

    解得:

    [t=leftlfloorsqrt{2t+frac{1}{4}}-frac{1}{2} ight floor ]

    那么我们的贡献就是:

    [egin{aligned}sum&=sum_{i=0}^{t}left(c-sum_{j=0}^{i}j ight)\&=(t+1)c-sum_{i=0}^{t}frac{i(i+1)}{2}\&=(t+1)c-frac{1}{2}left(sum_{i=0}^{t}i^2+sum_{i=0}^{t}i ight)\&=(t+1)c-frac{1}{2}left(frac{t(t+1)(2t+1)}{6}+frac{t(t+1)}{2} ight)\&=(t+1)c-frac{t(t+1)(t+2)}{6}end{aligned} ]

    于是我们就解决了这道题,最后输出 (maxlimits_{1le ile col}{f[i]}) 即可。

    细节注意事项

    • 由于 ( ext{tarjan}) 缩点时对边的操作不方便,可以在外部处理

    参考代码

    #include <algorithm>
    #include <iostream>
    #include <cstring>
    #include <cstdlib>
    #include <cstdio>
    #include <cctype>
    #include <cmath>
    #include <ctime>
    #include <queue>
    #define rg register
    #define pii pair < int, int >
    using namespace std;
    template < typename T > inline void read(T& s) {
    	s = 0; int f = 0; char c = getchar();
    	while (!isdigit(c)) f |= (c == '-'), c = getchar();
    	while (isdigit(c)) s = s * 10 + (c ^ 48), c = getchar();
    	s = f ? -s : s;
    }
    
    typedef long long LL;
    const int _ = 1000010;
    const LL INF = 1ll << 60;
    
    int tot, head[_], nxt[_], ver[_]; LL w[_];
    inline void Add_edge(int u, int v, LL d)
    { nxt[++tot] = head[u], head[u] = tot, ver[tot] = v, w[tot] = d; }
    
    int n, m, s, x[_], y[_]; LL c[_];
    int num, dfn[_], low[_];
    int top, st[_], col, co[_];
    int dgr[_]; LL val[_], f[_];
    
    inline void tarjan(int u) {
    	dfn[u] = low[u] = ++num, st[++top] = u;
    	for (rg int i = head[u]; i; i = nxt[i]) {
    		int v = ver[i];
    		if (!dfn[v])
    			tarjan(v), low[u] = min(low[u], low[v]);
    		else
    			if (!co[v]) low[u] = min(low[u], dfn[v]);
    	}
    	if (low[u] == dfn[u]) {
    		++col;
    		do co[st[top]] = col;
    		while (st[top--] != u);
    	}
    }
    
    inline LL calc(LL c) {
    	LL t = sqrt(c * 2 + 0.25) - 0.5;
    	return (t + 1) * c - t * (t + 1) * (t + 2) / 6;
    }
    
    inline void rebuild() {
    	for (rg int i = 1; i <= m; ++i)
    		if (co[x[i]] == co[y[i]])
    			val[co[x[i]]] += calc(c[i]);
    	memset(head, tot = 0, sizeof head);	
    	for (rg int i = 1; i <= m; ++i)
    		if (co[x[i]] != co[y[i]])
    			Add_edge(co[x[i]], co[y[i]], c[i] + val[co[y[i]]]), ++dgr[co[y[i]]];
    }
    
    inline LL toposort() {
    	LL _max = 0;
    	static queue < int > Q;
    	for (rg int i = 1; i <= col; ++i) {
    		if (dgr[i] == 0) Q.push(i); f[i] = -INF;
    	}
    	f[co[s]] = val[co[s]];
    	while (!Q.empty()) {
    		int u = Q.front(); Q.pop();
    		for (rg int v, i = head[u]; i; i = nxt[i]) {
    			if (!--dgr[v = ver[i]]) Q.push(v);
    			f[v] = max(f[v], f[u] + w[i]);
    		}
    	}
    	for (rg int i = 1; i <= col; ++i) _max = max(_max, f[i]);
    	return _max;
    }
    
    int main() {
    #ifndef ONLINE_JUDGE
    	freopen("in.in", "r", stdin);
    #endif
    	read(n), read(m);
    	for (rg int i = 1; i <= m; ++i)
    		read(x[i]), read(y[i]), read(c[i]), Add_edge(x[i], y[i], c[i]);
    	read(s);
    	for (rg int i = 1; i <= n; ++i) if (!dfn[i]) tarjan(i);
    	rebuild();
    	printf("%lld
    ", toposort());
    	return 0;
    }
    

    完结撒花 (qwq)

  • 相关阅读:
    作业2(5)
    作业2(7)
    作业2(4)
    作业2(3)
    作业2(1)
    作业3(5)
    作业3(6)
    实验7综合练习(4)
    实验7综合练习(2)
    计算成绩
  • 原文地址:https://www.cnblogs.com/zsbzsb/p/11745831.html
Copyright © 2011-2022 走看看