http://www.voidcn.com/blog/a34140974/article/p-5033426.html
1 Netd简介
Netd是Android的网络守护进程。NetD是个网络管家,封装了复杂的底层各种类型的网络(NAT,PLAN,PPP,SOFTAP,TECHER,ETHO,MDNS等),隔离了底层网络接口的差异,给Framework提供了统一调用接口,简化了网络的使用。NetD主要功能是:第一、接收Framework的网络请求,处理请求,向Framework层反馈处理结果;第二、监听网络事件(断开/连接/错误等),向Framework层上报。
2 Netd的启动过程
Netd作为后台服务进程在Andriod系统启动的init1阶段就被启动了,其在init.rc文件的配置如下:
service netd /system/bin/netd class main socket netd stream 0660 root system socket dnsproxyd stream 0660 root inet socket mdns stream 0660 root system socket fwmarkd stream 0660 root inet |
看一看到,这里为netd配置了4个socket(比老版本多了一个名字为“fwmakd”的socket),根据配置可找到netd的入口函数为main():
int main() { CommandListener *cl; NetlinkManager *nm; DnsProxyListener *dpl; MDnsSdListener *mdnsl; FwmarkServer* fwmarkServer; ALOGI("Netd 1.0 starting"); remove_pid_file();//猜测为每次重启时删除旧的 blockSigpipe();//禁止SIGPIPE中断 //创建NetlinkManager实例 if (!(nm = NetlinkManager::Instance())) { ALOGE("Unable to create NetlinkManager"); exit(1); }; //创建CommandListener实例,并将其设置为NetlinkManager的Broadcaster,之后启动nm cl = new CommandListener(); nm->setBroadcaster((SocketListener *) cl); if (nm->start()) { ALOGE("Unable to start NetlinkManager (%s)", strerror(errno)); exit(1); } // Set local DNS mode, to prevent bionic from proxying // back to this service, recursively. setenv("ANDROID_DNS_MODE", "local", 1); //创建并开始监听“dnsproxyd”socket dpl = new DnsProxyListener(CommandListener::sNetCtrl); if (dpl->startListener()) { ALOGE("Unable to start DnsProxyListener (%s)", strerror(errno)); exit(1); } //创建并开始监听“mdns”socket mdnsl = new MDnsSdListener(); if (mdnsl->startListener()) { ALOGE("Unable to start MDnsSdListener (%s)", strerror(errno)); exit(1); } //创建并开始监听“fwmarkd”socket fwmarkServer = new FwmarkServer(CommandListener::sNetCtrl); if (fwmarkServer->startListener()) { ALOGE("Unable to start FwmarkServer (%s)", strerror(errno)); exit(1); } /* * Now that we're up, we can respond to commands */ //开始监听“netd”socket if (cl->startListener()) { ALOGE("Unable to start CommandListener (%s)", strerror(errno)); exit(1); } bool wrote_pid = write_pid_file(); while(1) { sleep(30); // 30 sec if (!wrote_pid) { wrote_pid = write_pid_file(); } } ALOGI("Netd exiting"); remove_pid_file(); exit(0); } |
从上面个可以看出netd的启动并不复杂,主要是启动了4个监听socket,后面的分析将会看到每个socket对应这一个监听线程。首先来看NetlinkManage,NetlinkManager(以后简称NM)主要负责接收并解析来自Kernel的UEvent消息。如果对linux的socket特别熟悉的话,光从“NetlinkMananger”的名字就能推断出此类的基本实现和作用:肯定使用了PF_NETLINK的socket。这种socket一般是在应用层(相对于内核)监听内核事件的时候使用。例如USB的插拔等等。从main的代码可以知道它的入口为start()函数。
int NetlinkManager::start() { //创建接收NETLINK_KOBJECT_UEVENT消息的socket,其值保存在mUeventSock中 //其中,NETLINK_FORMAT_ASCII代表UEvent消息的内容为ASCII字符串 if ((mUeventHandler = setupSocket(&mUeventSock, NETLINK_KOBJECT_UEVENT, 0xffffffff, NetlinkListener::NETLINK_FORMAT_ASCII, false)) == NULL) { return -1; } //创建接收RTMGPR_LINK消息的socket,其值保存在mRouteSock中 //其中,NETLINK_FORMAT_BINARY代表UEvent消息的类型为结构体,故需要进行二进制解析 if ((mRouteHandler = setupSocket(&mRouteSock, NETLINK_ROUTE, RTMGRP_LINK | RTMGRP_IPV4_IFADDR | RTMGRP_IPV6_IFADDR | RTMGRP_IPV6_ROUTE | (1 << (RTNLGRP_ND_USEROPT - 1)), NetlinkListener::NETLINK_FORMAT_BINARY, false)) == NULL) { return -1; } //创建接收NETLINK_NFLOG消息的socket,其值保存在mQuotaSock中 if ((mQuotaHandler = setupSocket(&mQuotaSock, NETLINK_NFLOG, NFLOG_QUOTA_GROUP, NetlinkListener::NETLINK_FORMAT_BINARY, false)) == NULL) { ALOGE("Unable to open quota socket");
} //创建接收NETLINK_NETFILTER消息的socket,其值保存在mQuotaSock中 if ((mStrictHandler = setupSocket(&mStrictSock, NETLINK_NETFILTER, 0, NetlinkListener::NETLINK_FORMAT_BINARY_UNICAST, true)) == NULL) { ALOGE("Unable to open strict socket");
} return 0; } |
start()四次调用了setupSocket函数,新建了4个PF_NETLINK类型的socket监听内核的不同事件。查看函数setupSocket()。
NetlinkHandler *NetlinkManager::setupSocket(int *sock, int netlinkFamily, int groups, int format, bool configNflog) { struct sockaddr_nl nladdr; int sz = 64 * 1024; int on = 1; memset(&nladdr, 0, sizeof(nladdr)); nladdr.nl_family = AF_NETLINK; nladdr.nl_pid = getpid(); nladdr.nl_groups = groups; //新建socket,一定要注意这里的socket类型为SOCK_DGRAM,这句是整个Nm的关键 //netlinkFamily指定了soket监听的内核事件 if ((*sock = socket(PF_NETLINK, SOCK_DGRAM | SOCK_CLOEXEC, netlinkFamily)) < 0) { ALOGE("Unable to create netlink socket: %s", strerror(errno)); return NULL; } //设置socket的属性 if (setsockopt(*sock, SOL_SOCKET, SO_RCVBUFFORCE, &sz, sizeof(sz)) < 0) { ALOGE("Unable to set uevent socket SO_RCVBUFFORCE option: %s", strerror(errno)); close(*sock); return NULL; } if (setsockopt(*sock, SOL_SOCKET, SO_PASSCRED, &on, sizeof(on)) < 0) { SLOGE("Unable to set uevent socket SO_PASSCRED option: %s", strerror(errno)); close(*sock); return NULL; } //绑定 if (bind(*sock, (struct sockaddr *) &nladdr, sizeof(nladdr)) < 0) { ALOGE("Unable to bind netlink socket: %s", strerror(errno)); close(*sock); return NULL; } if (configNflog) {//只有mStrictSock对应的为true if (android_nflog_send_config_cmd(*sock, 0, NFULNL_CFG_CMD_PF_UNBIND, AF_INET) < 0) { ALOGE("Failed NFULNL_CFG_CMD_PF_UNBIND: %s", strerror(errno)); return NULL; } if (android_nflog_send_config_cmd(*sock, 0, NFULNL_CFG_CMD_PF_BIND, AF_INET) < 0) { ALOGE("Failed NFULNL_CFG_CMD_PF_BIND: %s", strerror(errno)); return NULL; } if (android_nflog_send_config_cmd(*sock, 0, NFULNL_CFG_CMD_BIND, AF_UNSPEC) < 0) { ALOGE("Failed NFULNL_CFG_CMD_BIND: %s", strerror(errno)); return NULL; } } //将socket封装成 NetLinkHandler,从而在socket有活动的时候处理 NetlinkHandler *handler = new NetlinkHandler(this, *sock, format); if (handler->start()) {//启动NetlinkHandler,实际就是启动监听 ALOGE("Unable to start NetlinkHandler: %s", strerror(errno)); close(*sock); return NULL; } return handler; } |
NetlinkHandler的start()函数转调了this-> startListener(),此方法实际上是继承自SocketListener类。这个类是一个比较通用的类,很多与socket的IO复用有关的模块都会调用此类的相关方法。
int SocketListener::startListener(int backlog) { //注意这个变量是类的成员变量,实际上这里就是想方设法得到socket if (!mSocketName && mSock == -1) { SLOGE("Failed to start unbound listener"); errno = EINVAL; return -1; } else if (mSocketName) { if ((mSock = android_get_control_socket(mSocketName)) < 0) { SLOGE("Obtaining file descriptor socket '%s' failed: %s", mSocketName, strerror(errno)); return -1; } SLOGV("got mSock = %d for %s", mSock, mSocketName); fcntl(mSock, F_SETFD, FD_CLOEXEC); } //如果设置了mListen则监听socket,如果没有设置则新建一个socketClient放入客户端集合 //注意短路,对于NetlinkHandler,从其构造函数可知mListen为false if (mListen && listen(mSock, backlog) < 0) { SLOGE("Unable to listen on socket (%s)", strerror(errno)); return -1; } else if (!mListen) mClients->push_back(new SocketClient(mSock, false, mUseCmdNum));//这里 if (pipe(mCtrlPipe)) { SLOGE("pipe failed (%s)", strerror(errno)); return -1; } //创建线程处理监听socket,这里其实并没有所谓的“监听socket”,因为是NETLINK型的socket if (pthread_create(&mThread, NULL, SocketListener::threadStart, this)) { SLOGE("pthread_create (%s)", strerror(errno)); return -1; } return 0; } |
进入线程的入口函数SocketListener::threadStart()
void *SocketListener::threadStart(void *obj) { SocketListener *me = reinterpret_cast<SocketListener *>(obj); //注意obj为主线程传递进来的参数,就是SocketListener me->runListener(); pthread_exit(NULL); return NULL; } |
进入runListener
void SocketListener::runListener() { //此函数的主要逻辑就是select() SocketClientCollection pendingList;//新建一个socketClientCollection存放活动fd while(1) { SocketClientCollection::iterator it; fd_set read_fds; int rc = 0; int max = -1; FD_ZERO(&read_fds); if (mListen) {//监听listenSocket的读事件,前面已经知道mListen此时为fasle max = mSock; FD_SET(mSock, &read_fds); } FD_SET(mCtrlPipe[0], &read_fds);//这里的pipe什么作用?中断循环标志? if (mCtrlPipe[0] > max) max = mCtrlPipe[0]; pthread_mutex_lock(&mClientsLock); //遍历mClients集合 for (it = mClients->begin(); it != mClients->end(); ++it) { // NB: calling out to an other object with mClientsLock held (safe) int fd = (*it)->getSocket();//获取与客户通信的socket FD_SET(fd, &read_fds);//监听它 if (fd > max) { max = fd; } } pthread_mutex_unlock(&mClientsLock); SLOGV("mListen=%d, max=%d, mSocketName=%s", mListen, max, mSocketName); if ((rc = select(max + 1, &read_fds, NULL, NULL, NULL)) < 0) {//select if (errno == EINTR) continue; SLOGE("select failed (%s) mListen=%d, max=%d", strerror(errno), mListen, max); sleep(1); continue; } else if (!rc) continue; if (FD_ISSET(mCtrlPipe[0], &read_fds)) {//如果是pipe有活动 char c = CtrlPipe_Shutdown; TEMP_FAILURE_RETRY(read(mCtrlPipe[0], &c, 1));//读取管道 if (c == CtrlPipe_Shutdown) { break;//难道这就是监听pipe的作用? } continue; } //如果是监听socket,接收连接请求,当然NETLINK不会走这里 if (mListen && FD_ISSET(mSock, &read_fds)) { struct sockaddr addr; socklen_t alen; int c; do { alen = sizeof(addr); c = accept(mSock, &addr, &alen); SLOGV("%s got %d from accept", mSocketName, c); } while (c < 0 && errno == EINTR); if (c < 0) { SLOGE("accept failed (%s)", strerror(errno)); sleep(1); continue; } fcntl(c, F_SETFD, FD_CLOEXEC); pthread_mutex_lock(&mClientsLock); //放入client集合 mClients->push_back(new SocketClient(c, true, mUseCmdNum)); pthread_mutex_unlock(&mClientsLock); } //将所有活动的fd都放入pendingList,貌似也只有一个 pendingList.clear(); pthread_mutex_lock(&mClientsLock); for (it = mClients->begin(); it != mClients->end(); ++it) { SocketClient* c = *it; // NB: calling out to an other object with mClientsLock held (safe) int fd = c->getSocket(); if (FD_ISSET(fd, &read_fds)) {//fd如果有活动 pendingList.push_back(c);//放入pendingList c->incRef(); } } pthread_mutex_unlock(&mClientsLock); //处理pendingList,这里的具体意思就是内核有事件了,需要上层处理 while (!pendingList.empty()) { /* Pop the first item from the list */ it = pendingList.begin(); SocketClient* c = *it; pendingList.erase(it); /* Process it, if false is returned, remove from list */ if (!onDataAvailable(c)) { release(c, false); } c->decRef(); } } } |
从上面的函数可以看到,这里实际上是对3类fd作了监听处理。一类是监听socket,一类是client socket,并且这类socket被封装成SocketClient集中在一个集合之内。还有一个就是pipe。从NetlinkManager.start()中我们已经知道启动了四套这样的结构,其socket分别为mUeventSock ,mRouteSock,mQuotaSock,mStrictSock。这些Socket都是PF_NETLINK类型的sockegt,并不是监听socket,具体一点就是他们对应的mListen均为false。也就是这四个socket被当做SocketClient添加进了mClients(注意有四个实例)。等等,那么监听socket在哪呢?压根就没有监听socket,这里采用的是SOCK_DGRAM类型的socket!
当检测到这些socket有可读事件发生时,也就是内核有上层感兴趣的事件发生时。相应的onDataAvailable()被调用,这是一个虚函数。分析可知此时this的具体类型为NetlinkHandler,因此调用的是NetlinkHandler的onDataAvailable()。
bool NetlinkListener::onDataAvailable(SocketClient *cli) { int socket = cli->getSocket(); ssize_t count; uid_t uid = -1; bool require_group = true; if (mFormat == NETLINK_FORMAT_BINARY_UNICAST) { require_group = false; } //读取数据 count = TEMP_FAILURE_RETRY(uevent_kernel_recv(socket, mBuffer, sizeof(mBuffer), require_group, &uid)); if (count < 0) { if (uid > 0) LOG_EVENT_INT(65537, uid); SLOGE("recvmsg failed (%s)", strerror(errno)); return false; } NetlinkEvent *evt = new NetlinkEvent();//新建一个NetLinkEvent if (evt->decode(mBuffer, count, mFormat)) {//解码 onEvent(evt);//调用了此函数,对event做了处理 } else if (mFormat != NETLINK_FORMAT_BINARY) { // Don't complain if parseBinaryNetlinkMessage returns false. That can // just mean that the buffer contained no messages we're interested in. SLOGE("Error decoding NetlinkEvent"); } delete evt; return true; } |
这里调用了onEvent()才是NetlinkHandler的入口。
void NetlinkHandler::onEvent(NetlinkEvent *evt) { const char *subsys = evt->getSubsystem(); if (!subsys) { ALOGW("No subsystem found in netlink event"); return; } if (!strcmp(subsys, "net")) { NetlinkEvent::Action action = evt->getAction(); const char *iface = evt->findParam("INTERFACE"); if (action == NetlinkEvent::Action::kAdd) { notifyInterfaceAdded(iface); } else if (action == NetlinkEvent::Action::kRemove) { notifyInterfaceRemoved(iface); } else if (action == NetlinkEvent::Action::kChange) { evt->dump(); notifyInterfaceChanged("nana", true); } else if (action == NetlinkEvent::Action::kLinkUp) { notifyInterfaceLinkChanged(iface, true); } else if (action == NetlinkEvent::Action::kLinkDown) { notifyInterfaceLinkChanged(iface, false); } else if (action == NetlinkEvent::Action::kAddressUpdated || action == NetlinkEvent::Action::kAddressRemoved) { const char *address = evt->findParam("ADDRESS"); const char *flags = evt->findParam("FLAGS"); const char *scope = evt->findParam("SCOPE"); if (action == NetlinkEvent::Action::kAddressRemoved && iface && address) { int resetMask = strchr(address, ':') ? RESET_IPV6_ADDRESSES : RESET_IPV4_ADDRESSES; resetMask |= RESET_IGNORE_INTERFACE_ADDRESS; if (int ret = ifc_reset_connections(iface, resetMask)) { ALOGE("ifc_reset_connections failed on iface %s for address %s (%s)", iface, address, strerror(ret)); } } if (iface && flags && scope) { notifyAddressChanged(action, address, iface, flags, scope); } } else if (action == NetlinkEvent::Action::kRdnss) { const char *lifetime = evt->findParam("LIFETIME"); const char *servers = evt->findParam("SERVERS"); if (lifetime && servers) { notifyInterfaceDnsServers(iface, lifetime, servers); } } else if (action == NetlinkEvent::Action::kRouteUpdated || action == NetlinkEvent::Action::kRouteRemoved) { const char *route = evt->findParam("ROUTE"); const char *gateway = evt->findParam("GATEWAY"); const char *iface = evt->findParam("INTERFACE"); if (route && (gateway || iface)) { notifyRouteChange(action, route, gateway, iface); } } } else if (!strcmp(subsys, "qlog")) { const char *alertName = evt->findParam("ALERT_NAME"); const char *iface = evt->findParam("INTERFACE"); notifyQuotaLimitReached(alertName, iface); } else if (!strcmp(subsys, "strict")) { const char *uid = evt->findParam("UID"); const char *hex = evt->findParam("HEX"); notifyStrictCleartext(uid, hex); } else if (!strcmp(subsys, "xt_idletimer")) { const char *label = evt->findParam("INTERFACE"); const char *state = evt->findParam("STATE"); const char *timestamp = evt->findParam("TIME_NS"); const char *uid = evt->findParam("UID"); if (state) notifyInterfaceClassActivity(label, !strcmp("active", state), timestamp, uid); #if !LOG_NDEBUG } else if (strcmp(subsys, "platform") && strcmp(subsys, "backlight")) { /* It is not a VSYNC or a backlight event */ ALOGV("unexpected event from subsystem %s", subsys); #endif } } |
可以看到,这里对不同的时间进行看了notifXxx所有的notifyXXXXX函数都会调用notify()函数
void NetlinkHandler::notify(int code, const char *format, ...) { char *msg; va_list args; va_start(args, format); if (vasprintf(&msg, format, args) >= 0) { //一定要注意这里的所使用的是cl的socket,名字为”netd”,而非之前的那四个 mNm->getBroadcaster()->sendBroadcast(code, msg, false); free(msg); } else { SLOGE("Failed to send notification: vasprintf: %s", strerror(errno)); } va_end(args); } |
mNm就是之前在main()中新建的NetworkMananger。其BroadCaster已经设置为了cl(即CommandListener的一个实例)。CommandListener通过netd向NetworkManagementService发送消息。这里的消息可能有两种:一种是底层主动上报的消息,另一种是上层请求的response。(这个和RILD很类似)
现在我们来整理一下上面的步骤:NetlinkManager新建了4个PF_NETLINK类型的socket,监听内核发生的uEvent。当内核发生相应的uEvent被对应的 NetlinkManager检测到。NetlinkManager将着个uEvent转化为NetlinkEvent 通过CommandListener广播到更上层。而这里的“更上层”指的是java层。可见,底层C/C++和上层java的联系是通过socket联系在一起的。
这里一定要清楚出两点:之前的4个socket并不是这里的BroadCaster的socket;而且,个人觉得这个BroadCaster名字也容易让人产生误解,以为是广播,广播对应的socket就应该是UDP。而实际上这个socket是init.rc配置的名字为“netd”的socke所accept出来的clientSocket,是一个TCPsocket。而TCPsocket是无法广播的。这里直接将sendBroadCast理解为sendMsg后面的就很好理解了。
接着分析CommandListener。这个类同样继承自SocketListener,与之前的4个Netlink socket所不同的是此类的mListen被设置为true。也就是“netd”为监听socket。CommandListener在之前的main函数中调用startListener开启监听来自java层的连接。当上层有连接时,select返回,accpet得到一个clientSocket,之后将其封装成SocketClient添加经list,并添加进select的监听队列。当java层下发命令,SocketClient的可读事件被检测到,从而做后续的处理,最后将底层处理结果response回上层,底层主动上报的消息也是通过此clientSocket上发到上层的。熟悉网络编程的就应该知道,这里是一个很典型的Select型的IO复用服务端模型。
除“netd”外,其他三个在init.rc中配置的socket:dnsproxyd mdns fwmarkd也构建了几乎一样的服务端结构。这里就不再赘述。以下为netd的大致框图: