zoukankan      html  css  js  c++  java
  • cf121C. Lucky Permutation(康托展开)

    题意

    题目链接

    Sol

    由于阶乘的数量增长非常迅速,而(k)又非常小,那么显然最后的序列只有最后几位会发生改变。

    前面的位置都是(i = a[i])。那么前面的可以直接数位dp/爆搜,后面的部分是经典问题,可以用逆康托展开计算。

    #include<bits/stdc++.h> 
    #define Pair pair<int, int>
    #define MP(x, y) make_pair(x, y)
    #define fi first
    #define se second
    #define int long long 
    #define LL long long 
    #define Fin(x) {freopen(#x".in","r",stdin);}
    #define Fout(x) {freopen(#x".out","w",stdout);}
    using namespace std;
    const int MAXN = 1e6 + 1, mod = 1e9 + 7, INF = 1e9 + 10;
    const double eps = 1e-9;
    template <typename A, typename B> inline bool chmin(A &a, B b){if(a > b) {a = b; return 1;} return 0;}
    template <typename A, typename B> inline bool chmax(A &a, B b){if(a < b) {a = b; return 1;} return 0;}
    template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
    template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
    template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
    template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
    template <typename A> inline void debug(A a){cout << a << '
    ';}
    template <typename A> inline LL sqr(A x){return 1ll * x * x;}
    inline int read() {
        char c = getchar(); int x = 0, f = 1;
        while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
        while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
        return x * f;
    }
    int N, K, fac[MAXN];
    vector<int> res;
    int find(int x) {
        sort(res.begin(), res.end());
        int t = res[x];
        res.erase(res.begin() + x);
        return t;
    }
    bool check(int x) {
        while(x) {
            if((x % 10) != 4 && (x % 10) != 7) return 0;
            x /= 10;
        }
        return 1;
    }
    int ans;
    void dfs(int x, int Lim) {//计算1 - lim中只包含4 7的数量 
        if(x > Lim) return ;
        if(x != 0) ans++;
        dfs(x * 10 + 4, Lim);
        dfs(x * 10 + 7, Lim);
    }
    signed main() {
        N = read(); K = read() - 1;
        int T = -1; fac[0] = 1;
        for(int i = 1; i <= N;i++) {
            fac[i] = i * fac[i - 1];
            res.push_back(N - i + 1);
            if(fac[i] > K) {T = i; break;}
        }
        if(T == -1) {puts("-1"); return 0;}
        dfs(0, N - T);
        for(int i = T; i >= 1; i--) {
            int t = find(K / fac[i - 1]), pos = N - i + 1;
            if(check(pos) && check(t)) ans++;
            K = K % fac[i - 1];
        }
        cout << ans;
        return 0;
    }
    /*
    
    */
    
  • 相关阅读:
    Nginx日志切割
    Spring Cloud Alibaba基础教程:Nacos+Dubbo
    Spring Cloud Alibaba基础教程:Sentinel
    Gogs+Drone搭建CI/CD平台
    Spring事件机制
    OpenGL 安装
    Melkman's Algorithm
    Tools: python 安装
    Tools: windbg 使用指南
    Tools: java安装指南
  • 原文地址:https://www.cnblogs.com/zwfymqz/p/10226449.html
Copyright © 2011-2022 走看看