题意
Sol
神仙二分Orz
首先二分一个答案,表示假设询问的位置为(x),把(>= x)的看成(1),(< x)的看成(0)
对形成的(0/1)序列模拟,线段树维护。
最后根据询问位置上的数缩小答案范围
这题的单调性不好想,但是证起来其实也挺显然的,考虑如果答案(x)最后对应的值为(1),那么(<x)的值最后对应的答案也一定为(1)
#include<bits/stdc++.h>
#define Pair pair<int, int>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
using namespace std;
const int MAXN = 4e6 + 10, INF = 1e9 + 10;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-')f =- 1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M, Q;
int a[MAXN], b[MAXN], opt[MAXN], L[MAXN], R[MAXN];
#define ls k << 1
#define rs k << 1 | 1
struct Node {
int l, r, siz, tag, cnt[2];
}T[MAXN];
Pair operator + (const Pair &a, const Pair &b) {
return MP(a.fi + b.fi, a.se + b.se);
}
void update(int k) {
for(int i = 0; i <= 1; i++) T[k].cnt[i] = T[ls].cnt[i] + T[rs].cnt[i];
}
void ps(int k, int val) {
T[k].cnt[0] = T[k].cnt[1] = 0;
T[k].cnt[val] = T[k].siz;
T[k].tag = val;
}
void pushdown(int k) {
if(T[k].tag == -1) return ;
ps(ls, T[k].tag); ps(rs, T[k].tag);
T[k].tag = -1;
}
void Build(int k, int ll, int rr) {
T[k].l = ll; T[k].r = rr; T[k].siz = rr - ll + 1; T[k].tag = -1; T[k].cnt[0] = T[k].cnt[1] = 0;
if(ll == rr) {T[k].cnt[b[ll]]++; return ;}
int mid = ll + rr >> 1;
Build(ls, ll, mid); Build(rs, mid + 1, rr);
update(k);
}
Pair Query(int k, int ll, int rr) {
if(ll <= T[k].l && T[k].r <= rr) return MP(T[k].cnt[0], T[k].cnt[1]);
int mid = T[k].l + T[k].r >> 1;
pushdown(k);
if(ll > mid) return Query(rs, ll, rr);
if(rr <= mid) return Query(ls, ll, rr);
return Query(ls, ll, rr) + Query(rs, ll, rr);
}
void Mem(int k, int ll, int rr, int val) {
if(ll <= T[k].l && T[k].r <= rr) {
ps(k, val); return ;
}
pushdown(k);
int mid = T[k].l + T[k].r >> 1;
if(ll <= mid) Mem(ls, ll, rr, val);
if(rr > mid) Mem(rs, ll, rr, val);
update(k);
}
int Point(int k, int pos) {
if(T[k].l == T[k].r) {
if(T[k].cnt[1]) return 1;
else return 0;
}
pushdown(k);
int mid = T[k].l + T[k].r >> 1;
if(pos <= mid) return Point(ls, pos);
else return Point(rs, pos);
}
void dfs(int k) {
if(T[k].l == T[k].r) {
if(T[k].cnt[1]) printf("1 ");
else printf("0 ");
return ;
}
pushdown(k);
dfs(ls); dfs(rs);
}
bool check(int val) {
for(int i = 1; i <= N; i++) b[i] = (a[i] >= val);
Build(1, 1, N);
//dfs(1); puts("");
for(int i = 1; i <= M; i++) {
Pair now = Query(1, L[i], R[i]);
if(opt[i] == 0) Mem(1, L[i], L[i] + now.fi - 1, 0), Mem(1, L[i] + now.fi, R[i], 1);
else Mem(1, L[i], L[i] + now.se - 1, 1), Mem(1, L[i] + now.se, R[i], 0);
// dfs(1); puts("");
}
return Point(1, Q);
}
main() {
N = read(); M = read();
for(int i = 1; i <= N; i++) a[i] = read();
for(int i = 1; i <= M; i++) opt[i] = read(), L[i] = read(), R[i] = read();
Q = read();
int l = 1, r = N, ans = -1;
while(l <= r) {
int mid = l + r >> 1;
if(check(mid)) ans = mid, l = mid + 1;
else r = mid - 1;
}
printf("%d", ans);
}