题意
Sol
倍增Floyd,妙妙喵
一个很显然的思路(然而我想不到是用(f[k][i][j])表示从(i)号点出发,走(k)步到(j)的最小值
但是这样复杂度是(O(n^4))的
考虑倍增优化,设(f[k][i][j])表示从(i)号点出发,走(2^k)步到(j)的最小值
每次转移相当于把两个矩阵乘起来,复杂度(O(n^3logn))
注意答案不一定有单调性,可以对每个点连一条向自己边权为(0)的边,这样就满足单调性了
感觉最近抄写代码很有手感啊qwq
#include<bits/stdc++.h>
#define chmin(a, b) (a = a < b ? a : b)
using namespace std;
const int MAXN = 301;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M, base;
struct Ma {
int m[MAXN][MAXN];
Ma() {
memset(m, 0x3f, sizeof(m));
}
Ma operator * (const Ma &rhs) const {
Ma ans;
for(int k = 1; k <= N; k++)
for(int i = 1; i <= N; i++)
for(int j = 1; j <= N; j++)
chmin(ans.m[i][j], m[i][k] + rhs.m[k][j]);
return ans;
}
}f[31], now, nxt;
int main() {
N = read(); M = read();
for(int i = 1; i <= M; i++) {
int x = read(), y = read(), w = read();
f[0].m[x][y] = w;
}
for(int i = 1; i <= N; i++) f[0].m[i][i] = now.m[i][i] = 0;
for(int i = 1; (1ll << i) <= N; i++) f[i] = f[i - 1] * f[i - 1], base = i;
int ans = 0;
for(int i = base; i >= 0; i--) {
bool flag = 0;
nxt = f[i] * now;
for(int j = 1; j <= N; j++) if(nxt.m[j][j] < 0) {flag = 1; break;}
if(!flag) ans += 1 << i, now = nxt;
}
printf("%d", ans + 1 > N ? 0 : ans + 1);
return 0;
}