zoukankan      html  css  js  c++  java
  • BZOJ4773: 负环(倍增Floyd)

    题意

    题目链接

    Sol

    倍增Floyd,妙妙喵

    一个很显然的思路(然而我想不到是用(f[k][i][j])表示从(i)号点出发,走(k)步到(j)的最小值

    但是这样复杂度是(O(n^4))

    考虑倍增优化,设(f[k][i][j])表示从(i)号点出发,走(2^k)步到(j)的最小值

    每次转移相当于把两个矩阵乘起来,复杂度(O(n^3logn))

    注意答案不一定有单调性,可以对每个点连一条向自己边权为(0)的边,这样就满足单调性了

    感觉最近写代码很有手感啊qwq

    #include<bits/stdc++.h>
    #define chmin(a, b) (a = a < b ? a : b)
    using namespace std;
    const int MAXN = 301;
    inline int read() {
        char c = getchar(); int x = 0, f = 1;
        while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
        while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
        return x * f;
    }
    int N, M, base;
    struct Ma {
        int m[MAXN][MAXN];
        Ma() {
            memset(m, 0x3f, sizeof(m));
        }
        Ma operator * (const Ma &rhs) const {
            Ma ans;
            for(int k = 1; k <= N; k++)
                for(int i = 1; i <= N; i++)
                    for(int j = 1; j <= N; j++) 
                        chmin(ans.m[i][j], m[i][k] + rhs.m[k][j]);
            return ans;
        }
    }f[31], now, nxt;
    int main() {
        N = read(); M = read();
        for(int i = 1; i <= M; i++) {
            int x = read(), y = read(), w = read();
            f[0].m[x][y] = w;
        }
        for(int i = 1; i <= N; i++) f[0].m[i][i] = now.m[i][i] = 0;
        for(int i = 1; (1ll << i) <= N; i++) f[i] = f[i - 1] * f[i - 1], base = i;
        int ans = 0;
        for(int i = base; i >= 0; i--) {
            bool flag = 0;
            nxt = f[i] * now;
            for(int j = 1; j <= N; j++) if(nxt.m[j][j] < 0) {flag = 1; break;}
            if(!flag) ans += 1 << i, now = nxt;
        }
        printf("%d", ans + 1 > N ? 0 : ans + 1);
        return 0;
    }
    
  • 相关阅读:
    ccf-集合竞价-201412-3
    ccf-命令行选项-201403-3
    ccf-路径解析201604-3
    ccf-炉石传说-201609-3
    CCF-权限查询-201612-3
    10个顶级的CSS UI开源框架
    移动端前端UI库—Frozen UI、WeUI、SUI Mobile
    @RenderBody、@RenderSection、@RenderPage、Html.RenderPartial、Html.RenderAction的作用和区别
    对比其它软件方法评估敏捷和Scrum
    SQL SERVER 2008 中三种分页方法与总结
  • 原文地址:https://www.cnblogs.com/zwfymqz/p/9862156.html
Copyright © 2011-2022 走看看