zoukankan      html  css  js  c++  java
  • 动态规划 BZOJ1801 [Ahoi2009]chess 中国象棋

    1801: [Ahoi2009]chess 中国象棋

    Time Limit: 10 Sec  Memory Limit: 64 MB
    Submit: 1861  Solved: 1068
    [Submit][Status][Discuss]

    Description

    在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮。 请问有多少种放置方法,中国像棋中炮的行走方式大家应该很清楚吧.

    Input

    一行包含两个整数N,M,中间用空格分开.

    Output

    输出所有的方案数,由于值比较大,输出其mod 9999973

    Sample Input

    1 3

    Sample Output

    7

    HINT

    除了在3个格子中都放满炮的的情况外,其它的都可以.

    100%的数据中N,M不超过100
    50%的数据中,N,M至少有一个数不超过8
    30%的数据中,N,M均不超过6

    看起来很像状压DP的套路是不是?然而只是个很水的比较基础的DP。

    满足要求的方法:每行每列棋子数不超过2,就有6种放法。

    (1) 不放;(2) 放一个棋子,在之前没有棋子的一列;(3) 放一个棋子,在之前有棋子的一列;(4) 放两个棋子,在之前没有棋子的两列;(5) 放两个棋子,在之前没有棋子的一列和在之前有棋子的一列;(6) 放两个棋子,在之前有棋子的两列。

    f[i][j][k]表示前i行,有j列是一个棋子,有k列是两个棋子的方案数,答案如左下

     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 #include<algorithm>
     5 const int mod=9999973;
     6 using namespace std;
     7 int n,m;
     8 long long ans;
     9 long long f[110][110][110];
    10 int main(){
    11     scanf("%d%d",&n,&m);
    12     memset(f,0,sizeof(f));
    13     f[0][0][0]=1;
    14     for(int i=1;i<=n;i++)
    15         for(int j=0;j<=m;j++)
    16             for(int k=0;k<=m-j;k++){
    17                 f[i][j][k]=f[i-1][j][k];
    18                 if(j>=1) f[i][j][k]=(f[i][j][k]+f[i-1][j-1][k]*(m-j-k+1))%mod;
    19                 if(k>=1) f[i][j][k]=(f[i][j][k]+f[i-1][j+1][k-1]*(j+1))%mod;
    20                 if(j>=2) f[i][j][k]=(f[i][j][k]+f[i-1][j-2][k]*(m-j-k+2)*(m-j-k+1)/2)%mod;
    21                 if(k>=2) f[i][j][k]=(f[i][j][k]+f[i-1][j+2][k-2]*(j+2)*(j+1)/2)%mod;
    22                 if(j>=1&&k>=1) f[i][j][k]=(f[i][j][k]+f[i-1][j][k-1]*(m-j-k+1)*j)%mod;
    23             }
    24     for(int i=0;i<=m;i++) 
    25         for(int j=0;j<=m-i;j++) ans=(ans+f[n][i][j])%mod;
    26     printf("%lld
    ",ans);
    27 }
  • 相关阅读:
    [SCOI2016] 幸运数字
    [CF438E] 小朋友和二叉树
    【题解】[AHOI2013]作业
    【题解】CF940F Machine Learning
    【题解】CF1207E XOR Guessing
    【题解】CF1228D Complete Tripartite
    【题解】CF1290B Irreducible Anagrams
    【题解】[JSOI2007]字符加密
    【题解】[SDOI2016]征途
    【题解】多边形染色
  • 原文地址:https://www.cnblogs.com/zwube/p/7259928.html
Copyright © 2011-2022 走看看