zoukankan      html  css  js  c++  java
  • 东南大学《数字图像处理》课程作业 8

    说明.pdf.1

    说明.pdf.2

    说明.pdf.3

    说明.pdf.4

    说明.pdf.5

    说明.pdf.6

    程序代码

    # coding: utf-8
    
    '''
    东南大学《数字图像处理》课程 作业8 - 图像分割
    09017227 卓旭 written with Python 3
    
    本程序内灰度图像作为二维数组,存储顺序为[行][列],像素点坐标表示为img[x][y],坐标系为
    O--------> [y axis]
    |
    |
    V [x axis]
    '''
    
    import imageio
    import numpy as np
    import cv2
    import matplotlib.pyplot as plt
    
    IMAGE_PATH='./segImg.bmp'
    
    '''
      读入灰度图像,转为二维numpy数组
    '''
    def readImage(imagePath):
      return imageio.imread(imagePath)
    
    '''
      图像分割
    '''
    def Seg(img):
      # STEP 1 - 大尺度中值滤波去噪
      res = cv2.medianBlur(img, 9)
      # cv2.imshow('Step 1 - Median Blur', res)
      # cv2.waitKey(0)
      # STEP 2 - 同态滤波消除光照影响
      def Homo(I):
        I = I + 1. # 避免log(0)
        I_log = np.log(I)
        # 7 X 7 均值窗口滤出低频
        light_log = cv2.blur(I_log, (7, 7))
        object_log = I_log - light_log
        # 低频减益,高频不变
        light_log = light_log * 0.1
        object_log = object_log * 1.0
        res = np.abs(np.exp(light_log)) * np.abs(np.exp(object_log))
        res = res - 1.
        minR, maxR = np.min(res), np.max(res)
        rangeR = maxR - minR
        for i in range(res.shape[0]):
          for j in range(res.shape[1]):
            res[i, j] = (res[i, j] - minR) / rangeR * 255.
        return np.asarray(res, np.uint8)
      res = Homo(res)
      # cv2.imshow('Step 2 - Homo Filter', res)
      # cv2.waitKey(0)
      # 绘制灰度直方图
      # plt.hist(res.ravel(), 256)
      # plt.show()
      # STEP 3 - 大津算法确定最佳阈值
      def Otsu(I):
        var_max = 0; best_th = 0
        for th in range(0, 256):
          mask_fore = I > th; mask_back = I <= th # 按当前测试阈值分割
          len_fore = np.sum(mask_fore); len_back = np.sum(mask_back) # 前后景像素数
          if len_fore == 0: # 已经分不出前景了,没有必要继续提高阈值了
            break
          if len_back == 0: # 背景过多,说明阈值不够,继续提高
            continue
          # 算法相关参数
          total_pixel = I.shape[0] * I.shape[1] # 图像尺寸
          w0 = float(len_fore) / total_pixel; w1 = float(len_back) / total_pixel # 两类的占比
          u0 = float(np.sum(I * mask_fore)) / len_fore; u1 = float(np.sum(I * mask_back)) / len_back # 两类的平均灰度
          var = w0 * w1 * ((u0 - u1) ** 2) # 类间方差
          if var > var_max:
            var_max = var; best_th = th
        return best_th
      OtsuThreshold = Otsu(res)
      # 按该阈值进行二值化
      for i in range(res.shape[0]):
        for j in range(res.shape[1]):
          res[i, j] = 255 if res[i, j] > OtsuThreshold else 0
      # cv2.imshow('Step 3 - Otsu Threshold', res)
      # cv2.waitKey(0)
      # STEP 4 - 利用形态学方法填充空洞
      def Fill(I):
        SEED_POINT = (233, 233)
        cpy = I.copy()
        flood_fill_mask = np.zeros((cpy.shape[0] + 2, cpy.shape[1] + 2), dtype=np.uint8)
        cv2.floodFill(cpy, flood_fill_mask, SEED_POINT, 255) # 漫水填充
        # 取补
        for i in range(cpy.shape[0]):
          for j in range(cpy.shape[1]):
            cpy[i, j] = 255 if cpy[i, j] == 0 else 0
        # 做并运算
        for i in range(I.shape[0]):
          for j in range(I.shape[1]):
            res[i, j] = 255 if (cpy[i, j] == 255 or res[i, j] == 255) else 0
        return res
      res = Fill(res)
    
      return np.asarray(res, np.uint8)
    
    if __name__ == '__main__':
      print("开始计算...")
      res = Seg(readImage(IMAGE_PATH))
      imageio.imwrite('SegOut.bmp', res)
      cv2.imshow('Seg Result', res)
      cv2.waitKey(0)
    
  • 相关阅读:
    49个128*128像素的天气png图标
    非常漂亮的千千静听皮肤[Warp]出自梦梦的作品
    腾讯的面试题
    什么是函数参数,如何传递函数参数
    我看了这视频,情不自禁的笑了
    WindowBlinds基础使用教程
    晒工资网站
    一个可以搜索word文档,电子表格,PDF,幻灯片的搜索引擎
    网页设计常用png小图标一套
    使用U盘时候的”无法停用通用卷”的解决办法
  • 原文地址:https://www.cnblogs.com/zxuuu/p/14387229.html
Copyright © 2011-2022 走看看