zoukankan      html  css  js  c++  java
  • 特征值与特征向量(一)

    转自:http://mini.eastday.com/bdmip/180328092726628.html#

    定义:

    对于给定矩阵A,寻找一个常数λ(可以为复数)和非零向量x,使得向量x被矩阵A作用后所得的向量Ax与原向量x平行,并且满足Ax=λx。

    2

    特征值和特征向量的几何意义

    看到硬生生的定义,模友估计会感到有点迷糊,那超模君就再从几何角度来讲一下它们到底是什么东西:

    我们以一个恋爱故事为栗子:

    二维公园(坐标轴)里的椅子上有一个孤独的向量v(-2,2),一个忠心(不变)的矩阵A试图从左边搭讪向量v,于是他们坐在一起得到向量Av

    他们就开始上谈天文,下聊地理。秀外慧中的向量v彻底迷住了矩阵A,待到离别时,A心里始终放不下v,当v去一个地方的时候,Av(A心里有着v,不是单纯的A)也陪着她去,就这样经历漫长的约会和成长(即下图中的向量v从左边移到右边),终于……

    向量v和Av结婚了(共线)!结婚后的向量v多了一份名义,叫做特征向量。而且向量Av的责任也变多了(上图是向量Av相对向量v来说伸长了)。也就是说,向量v与矩阵A的结婚后,向量Av保持忠心(方向)不变,责任变多了或什么东西变少了(进行比例为λ的伸缩)。

    那么我们也许会问:什么东西会变少呢?在恋爱中,向量v喜欢去爬山,向量Av喜欢玩游戏,他们一起度过许多美好时光。

    结婚后,向量Av的责任变多了,要撑起这一个家,把更多心思花在孩子教育上,兴趣爱好变少了(上图中容易看出这时候向量Av相对向量v来说“缩短”了)。责任对应的特征值大于1(伸长),兴趣爱好对应的特征值小于1(缩短)。

    随着时间的流逝(上下移动v)我们还发现,有两条直线上有着v和Av的所有踪迹,这就是他们的生活空间(特征空间)。换句话说,特征空间包含所有的特征向量。

    下面的一个类比可以帮助我们更好的理解特征值和特征向量:

    如果把矩阵看作是运动,那么特征值就是运动的速度,特征向量就是运动的方向。

    特征向量在一个矩阵的作用下作伸缩运动,伸缩的幅度由特征值确定。特征值大于1,所有属于此特征值的特征向量变长;特征值大于0小于1,特征向量缩短;特征值小于0,特征向量缩过了界,反方向到原点那边去了。

    为了让模友们看清楚它们的变化,超模君做了几个动图,我们来感受一下吧:

    (1)首先,我们通过改变向量v的位置,看看向量Av有什么变化(矩阵A不动噢)

    (2)然后,我们不要动向量v,改变矩阵A每一列(通过移动a1和a2),再看看向量Av有什么变化

    (3)接下来是见证奇迹的时刻!看看超模君的金手指怎么移动向量v使它变成特征向量吧!(不好意思,在上移的时候手抖了一下)

    (4)最后,我们改变矩阵A(通过移动a1和a2),重点看看特征空间(S1和S2)是怎么变化(特征值也会发生变化哟)

    3

    特征值和特征向量的应用

    说了这么多,可能有模友会问:到底特征值和特征向量有什么用呢?不会仅仅用来考试吧!

    其实,特征值和特征向量在我们的生活中都是非常普遍的。

    (1)可以用在研究物理、化学领域的微分方程、连续的或离散的动力系统中。例如,在力学中,惯量的特征向量定义了刚体的主轴。惯量是决定刚体围绕质心转动的关键数据;

    (2)数学生态学家用来预测原始森林遭到何种程度的砍伐,会造成猫头鹰的种群灭亡;

    (3)著名的图像处理中的PCA方法,选取特征值最高的k个特征向量来表示一个矩阵,从而达到降维分析+特征显示的方法,还有图像压缩的K-L变换。再比如很多人脸识别,数据流模式挖掘分析等方面。

    (4)在谱系图论中,一个图的特征值定义为图的邻接矩阵A的特征值,或者(更多的是)图的拉普拉斯算子矩阵,Google的PageRank算法就是一个例子。

    有一句话说得好:“只要有振动就有特征值,即振动的自然频率”。如果你曾经弹过吉他,你已经求解了一个特征值问题。。。

  • 相关阅读:
    flash中网页跳转总结
    as3自定义事件
    mouseChildren启示
    flash拖动条移出flash无法拖动
    需要一个策略文件,但在加载此媒体时未设置checkPolicyFile标志
    Teach Yourself SQL in 10 Minutes
    电子书本地转换软件 Calibre
    Teach Yourself SQL in 10 Minutes
    Teach Yourself SQL in 10 Minutes
    Teach Yourself SQL in 10 Minutes – Page 31 练习
  • 原文地址:https://www.cnblogs.com/zzdbullet/p/10069436.html
Copyright © 2011-2022 走看看