zoukankan      html  css  js  c++  java
  • spark中常用转换操作keys 、values和mapValues

    1.keys

    功能:

      返回所有键值对的key

    示例

    val list = List("hadoop","spark","hive","spark")
    val rdd = sc.parallelize(list)
    val pairRdd = rdd.map(x => (x,1))
    pairRdd.keys.collect.foreach(println)
    

    结果

    hadoop
    spark
    hive
    spark
    list: List[String] = List(hadoop, spark, hive, spark)
    rdd: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[142] at parallelize at command-3434610298353610:2
    pairRdd: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[143] at map at command-3434610298353610:3
    

    2.values

    功能:

      返回所有键值对的value

    示例

    val list = List("hadoop","spark","hive","spark")
    val rdd = sc.parallelize(list)
    val pairRdd = rdd.map(x => (x,1))
    pairRdd.values.collect.foreach(println)
    

    结果

    1
    1
    1
    1
    list: List[String] = List(hadoop, spark, hive, spark)
    rdd: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[145] at parallelize at command-3434610298353610:2
    pairRdd: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[146] at map at command-3434610298353610:3
    

    3.mapValues(func)

    功能:

      对键值对每个value都应用一个函数,但是,key不会发生变化。

    示例 

    val list = List("hadoop","spark","hive","spark")
    val rdd = sc.parallelize(list)
    val pairRdd = rdd.map(x => (x,1))
    pairRdd.mapValues(_+1).collect.foreach(println)//对每个value进行+1
    

    结果

    (hadoop,2)
    (spark,2)
    (hive,2)
    (spark,2)


  • 相关阅读:
    提问回顾与个人总结
    软工结对作业
    软件工程第一次阅读作业
    软件工程第0次作业
    oo第四次博客总结
    第三次博客总结
    第二次博客作业
    OO第一次总结博客
    软工第二次作业
    软工第一次作业
  • 原文地址:https://www.cnblogs.com/123456www/p/12308247.html
Copyright © 2011-2022 走看看