zoukankan      html  css  js  c++  java
  • 剑指offer---滑动窗口的最大值

    我开始的方法。。。跟原始人一样 还是太菜

    class Solution 
    {
    public:
        int FindMax(const vector<int> &a, int start, int end)
        {
            int MaxNum = -100000;
            for (int i = start; i <= end; ++i)
            {
                MaxNum = max(MaxNum, a[i]);
            }
            return MaxNum;
    
        }
        vector<int> maxInWindows(const vector<int>& num, unsigned int size)
        {
            vector<int> re;
            int in_size = num.size();
            if (size <= 0) return re;
            if (size > 0 && size < in_size)
            {
                for (int i = 0; i <= (in_size - size); ++i)
                {
                    int temp = FindMax(num, i, i + size - 1);
                    re.push_back(temp);
                }
    
                return re;
            }
            else if(size==in_size)
            {
                int temp=FindMax(num,0,in_size-1);
                re.push_back(temp);
                return re;
            }
            else return re;
            
        }
    };

    更好的方法 利用到队列

    class Solution {
    public:
        vector<int> maxInWindows(const vector<int>& num, unsigned int size)
        {
            vector<int> res;
            deque<int> s;
            for(unsigned int i=0;i<num.size();++i){
                while(s.size() && num[s.back()]<=num[i])//从后面依次弹出队列中比当前num值小的元素,同时也能保证队列首元素为当前窗口最大值下标
                    s.pop_back();
                while(s.size() && i-s.front()+1>size)//当当前窗口移出队首元素所在的位置,即队首元素坐标对应的num不在窗口中,需要弹出
                    s.pop_front();
                s.push_back(i);//把每次滑动的num下标加入队列
                if(size&&i+1>=size)//当滑动窗口首地址i大于等于size时才开始写入窗口最大值
                    res.push_back(num[s.front()]);
            }
            return res;
        }
    };
  • 相关阅读:
    2thweek.training.c。链表典型题
    队列—summer training B.
    栈—summertraining#2.A题
    周题:UVa10736题。Foreign Exchange
    UVA_11877.第三次比赛C题:The Coco Cola
    uva10465 Homer Simpson(水题)
    uva348 Optimal Array Multiplication Sequence(DP)
    uva116 Unidirectional TSP(DP)
    uva 607 Scheduling Lectures(DP)
    uva11598 Optimal Segments(DP 求方案)
  • 原文地址:https://www.cnblogs.com/159269lzm/p/7275327.html
Copyright © 2011-2022 走看看